Suppr超能文献

注意感知的非刚性图像配准在加速磁共振成像中的应用。

Attention-Aware Non-Rigid Image Registration for Accelerated MR Imaging.

出版信息

IEEE Trans Med Imaging. 2024 Aug;43(8):3013-3026. doi: 10.1109/TMI.2024.3385024.

Abstract

Accurate motion estimation at high acceleration factors enables rapid motion-compensated reconstruction in Magnetic Resonance Imaging (MRI) without compromising the diagnostic image quality. In this work, we introduce an attention-aware deep learning-based framework that can perform non-rigid pairwise registration for fully sampled and accelerated MRI. We extract local visual representations to build similarity maps between the registered image pairs at multiple resolution levels and additionally leverage long-range contextual information using a transformer-based module to alleviate ambiguities in the presence of artifacts caused by undersampling. We combine local and global dependencies to perform simultaneous coarse and fine motion estimation. The proposed method was evaluated on in-house acquired fully sampled and accelerated data of 101 patients and 62 healthy subjects undergoing cardiac and thoracic MRI. The impact of motion estimation accuracy on the downstream task of motion-compensated reconstruction was analyzed. We demonstrate that our model derives reliable and consistent motion fields across different sampling trajectories (Cartesian and radial) and acceleration factors of up to 16x for cardiac motion and 30x for respiratory motion and achieves superior image quality in motion-compensated reconstruction qualitatively and quantitatively compared to conventional and recent deep learning-based approaches. The code is publicly available at https://github.com/lab-midas/GMARAFT.

摘要

在高加速因子下进行准确的运动估计,能够在不影响诊断图像质量的情况下,实现磁共振成像(MRI)的快速运动补偿重建。在这项工作中,我们引入了一种基于注意力的深度学习框架,能够对完全采样和加速的 MRI 进行非刚性的成对配准。我们提取局部视觉表示,在多个分辨率水平上构建配准图像对之间的相似性图,并使用基于转换器的模块利用远程上下文信息,以减轻由于欠采样导致的伪影引起的歧义。我们结合局部和全局依赖关系,进行同时的粗和精运动估计。所提出的方法在内部采集的 101 名患者和 62 名健康受试者的完全采样和加速数据上进行了评估,这些受试者接受了心脏和胸部 MRI 检查。分析了运动估计精度对下游运动补偿重建任务的影响。我们证明,我们的模型在不同的采样轨迹(笛卡尔和径向)和高达 16x 的心脏运动加速因子和 30x 的呼吸运动加速因子下,能够得到可靠和一致的运动场,并在运动补偿重建方面,与传统方法和最近的基于深度学习的方法相比,在质量和数量上都具有优势。代码可在 https://github.com/lab-midas/GMARAFT 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验