Pan Jiazhen, Hamdi Manal, Huang Wenqi, Hammernik Kerstin, Kuestner Thomas, Rueckert Daniel
Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
Med Image Anal. 2024 Jan;91:103017. doi: 10.1016/j.media.2023.103017. Epub 2023 Oct 28.
In recent years Motion-Compensated MR reconstruction (MCMR) has emerged as a promising approach for cardiac MR (CMR) imaging reconstruction. MCMR estimates cardiac motion and incorporates this information in the reconstruction. However, two obstacles prevent the practical use of MCMR in clinical situations: First, inaccurate motion estimation often leads to inferior CMR reconstruction results. Second, the motion estimation frequently leads to a long processing time for the reconstruction. In this work, we propose a learning-based and unrolled MCMR framework that can perform precise and rapid CMR reconstruction. We achieve accurate reconstruction by developing a joint optimization between the motion estimation and reconstruction, in which a deep learning-based motion estimation framework is unrolled within an iterative optimization procedure. With progressive iterations, a mutually beneficial interaction can be established in which the reconstruction quality is improved with more accurate motion estimation. Further, we propose a groupwise motion estimation framework to speed up the MCMR process. A registration template based on the cardiac sequence average is introduced, while the motion estimation is conducted between the cardiac frames and the template. By applying this framework, cardiac sequence registration can be accomplished with linear time complexity. Experiments on 43 in-house acquired 2D CINE datasets indicate that the proposed unrolled MCMR framework can deliver artifacts-free motion estimation and high-quality CMR reconstruction even for imaging acceleration rates up to 20x. We compare our approach with state-of-the-art reconstruction methods and it outperforms them quantitatively and qualitatively in all adapted metrics across all acceleration rates.
近年来,运动补偿磁共振成像重建(MCMR)已成为心脏磁共振成像(CMR)重建的一种有前景的方法。MCMR可估计心脏运动并将此信息纳入重建过程。然而,有两个障碍阻碍了MCMR在临床中的实际应用:第一,不准确的运动估计常常导致较差的CMR重建结果。第二,运动估计常常导致重建的处理时间过长。在这项工作中,我们提出了一种基于学习的、展开式的MCMR框架,该框架能够进行精确且快速的CMR重建。我们通过在运动估计和重建之间进行联合优化来实现精确重建,其中基于深度学习的运动估计框架在迭代优化过程中展开。随着迭代的进行,可以建立一种互利的相互作用,即通过更精确的运动估计来提高重建质量。此外,我们提出了一种分组运动估计框架以加速MCMR过程。引入了基于心脏序列平均值的配准模板,同时在心脏帧与模板之间进行运动估计。通过应用此框架,心脏序列配准可以以线性时间复杂度完成。对43个内部采集的2D电影数据集进行的实验表明,所提出的展开式MCMR框架即使在成像加速率高达20倍的情况下,也能提供无伪影的运动估计和高质量的CMR重建。我们将我们的方法与当前最先进的重建方法进行比较,在所有加速率下的所有适配指标上,我们的方法在定量和定性方面均优于它们。