Suppr超能文献

动态物联网-移动边缘计算网络中基于用户移动性和资源需求预测的软件定义网络主动重配置

SFC active reconfiguration based on user mobility and resource demand prediction in dynamic IoT-MEC networks.

作者信息

Guo Shuang, Liu Liang, Jing Tengxiang, Liu Huan

机构信息

Chongqing College of Mobile Communication, Qijiang, Chongqing, China.

Chongqing Key Laboratory of Public Big Data Security Technology, Qijiang, Chongqing, China.

出版信息

PLoS One. 2024 Aug 1;19(8):e0306777. doi: 10.1371/journal.pone.0306777. eCollection 2024.

Abstract

To achieve secure, reliable, and scalable traffic delivery, request streams in mobile Internet of Things (IoT) networks supporting Multi-access Edge Computing (MEC) typically need to pass through a service function chain (SFC) consisting of an ordered series of Virtual Network Functions (VNFs), and then arrive at the target application in the MEC for processing. The high mobility of users and the real-time variability of network traffic in IoT-MEC networks lead to constant changes in the network state, which results in a mismatch between the performance requirements of the currently deployed SFCs and the allocated resources. Meanwhile, there are usually multiple instances of the same VNF in the network, and proactively reconfiguring the deployed SFCs based on the network state changes to ensure high quality of service in the network is a great challenge. In this paper, we study the SFC Reconfiguration Strategy (SFC-RS) based on user mobility and resource demand prediction in IoT MEC networks, aiming to minimize the end-to-end delay and reconfiguration cost of SFCs. First, we model SFC-RS as Integer Linear Programming (ILP). Then, a user trajectory prediction model based on codec movement with attention mechanism and a VNF resource demand prediction model based on the Long Short-Term Memory (LSTM) network are designed to accurately predict user trajectories and node computational and storage resources, respectively. Based on the prediction results, a Prediction-based SFV Active Reconfiguration (PSAR) algorithm is proposed to achieve seamless SFC migration and routing update before the user experience quality degrades, ensuring network consistency and high quality service. Simulation results show that PSAR provides 51.28%, 28.60%, 21.75%, and 16.80% performance improvement over the existing TSRFCM, DDQ, OSA, and DPSM algorithms in terms of end-to-end delay reduction, and 33.32%, 18.94%, 67.42%, and 60.61% performance optimization in terms of reconfiguration cost reduction.

摘要

为实现安全、可靠且可扩展的流量交付,支持多接入边缘计算(MEC)的移动物联网(IoT)网络中的请求流通常需要经过由一系列有序虚拟网络功能(VNF)组成的服务功能链(SFC),然后到达MEC中的目标应用进行处理。物联网-MEC网络中用户的高移动性和网络流量的实时变化性导致网络状态不断变化,这使得当前部署的SFC的性能要求与分配的资源之间出现不匹配。同时,网络中通常存在同一VNF的多个实例,基于网络状态变化主动重新配置已部署的SFC以确保网络中的高服务质量是一项巨大挑战。在本文中,我们研究了基于物联网MEC网络中用户移动性和资源需求预测的SFC重新配置策略(SFC-RS),旨在最小化SFC的端到端延迟和重新配置成本。首先,我们将SFC-RS建模为整数线性规划(ILP)。然后,设计了一种基于带注意力机制的编解码器移动的用户轨迹预测模型和一种基于长短期记忆(LSTM)网络的VNF资源需求预测模型,分别用于准确预测用户轨迹以及节点的计算和存储资源。基于预测结果,提出了一种基于预测的SFV主动重新配置(PSAR)算法,以在用户体验质量下降之前实现SFC的无缝迁移和路由更新,确保网络一致性和高服务质量。仿真结果表明,在降低端到端延迟方面,PSAR相对于现有TSRFCM、DDQ、OSA和DPSM算法的性能提升分别为51.28%、28.60%、21.75%和16.80%;在降低重新配置成本方面,性能优化分别为33.32%、18.94%、67.42%和60.61%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e544/11293735/8042e688d389/pone.0306777.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验