Suppr超能文献

用于追踪 l-半胱氨酸的透气可穿戴智能传感器源自界面自组装膜

Breathable Wearable Smartsensors Deriving from Interface Self-Assembled Film for Tracking l-Cysteine.

机构信息

Central Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China.

School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.

出版信息

Anal Chem. 2024 Aug 13;96(32):13070-13077. doi: 10.1021/acs.analchem.4c01511. Epub 2024 Aug 1.

Abstract

The advent of wearable sensors heralds a transformation in the continuous, noninvasive analysis of biomarkers critical for disease diagnosis and fitness management. Yet, their advancement is hindered by the functional challenges affiliated with their active sensing analysis layer. Predominantly due to suboptimal intrinsic material properties and inconsistent dispersion leading to aggregation, thus compromising sensor repeatability and performance. Herein, an innovative approach to the functionalization of wearable electrochemical sensors was introduced, specifically addressing these limitations. The method involves a proton-induced self-assembly technique at the organic-water (O/W) interface, facilitating the generation of biomarker-responsive films. This research offers flexible, breathable sensor capable of real-time precision tracking l-cysteine (l-Cys) precision tracking. Utilizing an activation mechanism for Prussian blue nanoparticles by hydrogen peroxide, the catalytic core exhibits a specific response to l-Cys. The implications of this study refine the fabrication of film-based analysis electrodes for wearable sensing applications and the broader utilization of two-dimensional materials in functional-specific response films. Findings illuminate the feasibility of this novel strategy for precise biomarker tracking and extend to pave the way for constructing high-performance electrocatalytic analytical interfaces.

摘要

可穿戴传感器的出现预示着对疾病诊断和健康管理至关重要的生物标志物的连续、非侵入性分析将发生转变。然而,它们的发展受到与其主动传感分析层相关的功能挑战的阻碍。主要是由于内在材料性能不理想和不一致的分散导致聚集,从而降低了传感器的重复性和性能。在此,引入了一种针对可穿戴电化学传感器功能化的创新方法,专门解决这些限制。该方法涉及在有机-水(O/W)界面上的质子诱导自组装技术,促进生物标志物响应膜的生成。该研究提供了一种灵活、透气的传感器,能够实时精确跟踪 l-半胱氨酸(l-Cys)。利用过氧化氢对普鲁士蓝纳米粒子的激活机制,催化核心对 l-Cys 表现出特异性响应。这项研究的意义在于改进了用于可穿戴传感应用的基于薄膜的分析电极的制造,并扩大了二维材料在功能特定响应薄膜中的应用。研究结果阐明了这种用于精确生物标志物跟踪的新策略的可行性,并为构建高性能电催化分析界面铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验