Lu Yongli, Zhu Hua, Tan Shaun, Zhang Ruiqi, Shih Meng-Chen, Grotevent Matthias J, Lin Yu-Kuan, Choi Seung-Gu, Lee Jin-Wook, Bulović Vladimir, Bawendi Moungi G
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
J Am Chem Soc. 2024 Aug 14;146(32):22387-22395. doi: 10.1021/jacs.4c05398. Epub 2024 Aug 1.
Preventing ion migration in perovskite photovoltaics is key to achieving stable and efficient devices. The activation energy for ion migration is affected by the chemical environment surrounding the ions. Thus, the migration of organic cations in lead halide perovskites can be mitigated by engineering their local interactions, for example through hydrogen bonding. Ion migration also leads to ionic losses via interfacial reactions. Undesirable reactivities of the organic cations can be eliminated by introducing protecting groups. In this work, we report bis(2-oxo-3-oxazolidinyl) phosphinic chloride (BOP-Cl) as a perovskite ink additive with the following benefits: (1) The phosphoryl and two oxo groups form six-membered intermolecular hydrogen-bonded rings with the formamidinium cation (FA), mitigating ion migrations. (2) The hydrogen bonding reduces the electrophilicity of the ammonium protons by donating electron density, therefore reducing its reactivity with the surface oxygen on the metal oxide. Furthermore, the molecule can react to form a protecting group on the nucleophilic oxygen at the tin oxide transport layer surface through the elimination of chlorine. As a result, we achieve perovskite solar cells with an efficiency of 25.0% and improved MPP stability T93 = 1200 h at 40-45 °C compared to a control device (T86 = 550 h). In addition, we show a negative correlation between the strength of hydrogen bonding of different phosphine oxide derivatives to the organic cations and the degree of metastable behavior (e.g., initial burn-in) of the device.
防止钙钛矿光伏器件中的离子迁移是实现稳定高效器件的关键。离子迁移的活化能受离子周围化学环境的影响。因此,通过设计卤化铅钙钛矿中有机阳离子的局部相互作用,例如通过氢键作用,可以减轻其迁移。离子迁移还会通过界面反应导致离子损失。通过引入保护基团可以消除有机阳离子的不良反应性。在这项工作中,我们报道了双(2-氧代-3-恶唑烷基)次膦酰氯(BOP-Cl)作为一种钙钛矿墨水添加剂,具有以下优点:(1)磷酰基和两个氧代基团与甲脒阳离子(FA)形成六元分子间氢键环,减轻离子迁移。(2)氢键通过提供电子密度降低铵质子的亲电性,从而降低其与金属氧化物表面氧的反应性。此外,该分子可以通过消除氯在氧化锡传输层表面的亲核氧上反应形成保护基团。结果,我们制备出了效率为25.0%的钙钛矿太阳能电池,与对照器件相比,在40-45°C下的最大功率点稳定性T93提高到了1200小时(对照器件T86为550小时)。此外,我们还表明不同氧化膦衍生物与有机阳离子之间氢键强度与器件亚稳行为程度(例如初始老化)之间存在负相关。