Suppr超能文献

由 3D 打印负模制备的具有生物活性的聚合物复合支架可促进骨形成和血管生成。

Bioactive polymer composite scaffolds fabricated from 3D printed negative molds enable bone formation and vascularization.

机构信息

Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, Victoria 3800, Australia; CSIRO Manufacturing, Research Way, Clayton VIC 3168, Australia.

Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, Victoria 3800, Australia.

出版信息

Acta Biomater. 2024 Sep 15;186:260-274. doi: 10.1016/j.actbio.2024.07.038. Epub 2024 Jul 30.

Abstract

Scaffolds for bone defect treatment should ideally support vascularization and promote bone formation, to facilitate the translation into biomedical device applications. This study presents a novel approach utilizing 3D-printed water-dissolvable polyvinyl alcohol (PVA) sacrificial molds to engineer polymerized High Internal Phase Emulsion (polyHIPE) scaffolds with microchannels and distinct multiscale porosity. Two sacrificial mold variants (250 µm and 500 µm) were generated using fused deposition modeling, filled with HIPE, and subsequently dissolved to create polyHIPE scaffolds containing microchannels. In vitro assessments demonstrated significant enhancement in cell infiltration, proliferation, and osteogenic differentiation, underscoring the favorable impact of microchannels on cell behavior. High loading efficiency and controlled release of the osteogenic factor BMP-2 were achieved, with microchannels facilitating release of the growth factor. Evaluation in a mouse critical-size calvarial defect model revealed enhanced vascularization and bone formation in microchanneled scaffolds containing BMP-2. This study not only introduces an accessible method for creating multiscale porosity in polyHIPE scaffolds but also emphasizes its capability to enhance cellular infiltration, controlled growth factor release, and in vivo performance. The findings suggest promising applications in bone tissue engineering and regenerative medicine, and are expected to facilitate the translation of this type of biomaterial scaffold. STATEMENT OF SIGNIFICANCE: This study holds significance in the realm of biomaterial scaffold design for bone tissue engineering and regeneration. We demonstrate a novel method to introduce controlled multiscale porosity and microchannels into polyHIPE scaffolds, by utilizing 3D-printed water-dissolvable PVA molds. The strategy offers new possibilities for improving cellular infiltration, achieving controlled release of growth factors, and enhancing vascularization and bone formation outcomes. This microchannel approach not only marks a substantial stride in scaffold design but also demonstrates its tangible impact on enhancing osteogenic cell differentiation and fostering robust bone formation in vivo. The findings emphasize the potential of this methodology for bone regeneration applications, showcasing an interesting advancement in the quest for effective and innovative biomaterial scaffolds to regenerate bone defects.

摘要

用于骨缺损治疗的支架理想情况下应支持血管生成并促进骨形成,以促进其转化为生物医学设备应用。本研究提出了一种新方法,利用 3D 打印的可水溶聚乙烯醇 (PVA) 牺牲模具来构建具有微通道和明显多尺度多孔性的聚合高内相乳液 (polyHIPE) 支架。使用熔融沉积建模生成了两种牺牲模具变体(250 µm 和 500 µm),用 HIPE 填充,然后溶解以创建含有微通道的 polyHIPE 支架。体外评估表明细胞浸润、增殖和成骨分化显著增强,突出了微通道对细胞行为的有利影响。实现了骨形态发生蛋白 2 (BMP-2) 的高负载效率和控制释放,微通道促进了生长因子的释放。在含有 BMP-2 的小鼠临界尺寸颅骨缺损模型中的评估显示,微通道支架中增强了血管生成和骨形成。本研究不仅介绍了在 polyHIPE 支架中创建多尺度多孔性的一种易于使用的方法,还强调了其增强细胞浸润、控制生长因子释放和体内性能的能力。研究结果表明在骨组织工程和再生医学中有应用前景,并有望促进这种生物材料支架的转化。

意义声明

本研究在骨组织工程和再生医学的生物材料支架设计领域具有重要意义。我们展示了一种新方法,通过利用 3D 打印的水溶 PVA 模具,将受控的多尺度多孔性和微通道引入 polyHIPE 支架中。该策略为改善细胞浸润、实现生长因子的控制释放以及增强血管生成和骨形成结果提供了新的可能性。这种微通道方法不仅标志着支架设计的重大进展,还证明了其在增强成骨细胞分化和促进体内强壮骨形成方面的实际影响。研究结果强调了该方法在骨再生应用中的潜力,展示了在寻求有效和创新的生物材料支架以再生骨缺损方面的有趣进展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验