Suppr超能文献

通过提高机器学习的可解释性来解码脑脊液动力学的脉动模式。

Decoding pulsatile patterns of cerebrospinal fluid dynamics through enhancing interpretability in machine learning.

作者信息

Keles Ayse, Ozisik Pinar Akdemir, Algin Oktay, Celebi Fatih Vehbi, Bendechache Malika

机构信息

Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Ankara Medipol University, Ankara, Turkey.

Department of Neurosurgery, School of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey.

出版信息

Sci Rep. 2024 Aug 1;14(1):17854. doi: 10.1038/s41598-024-67928-4.

Abstract

Analyses of complex behaviors of Cerebrospinal Fluid (CSF) have become increasingly important in diseases diagnosis. The changes of the phase-contrast magnetic resonance imaging (PC-MRI) signal formed by the velocity of flowing CSF are represented as a set of velocity-encoded images or maps, which can be thought of as signal data in the context of medical imaging, enabling the evaluation of pulsatile patterns throughout a cardiac cycle. However, automatic segmentation of the CSF region in a PC-MRI image is challenging, and implementing an explained ML method using pulsatile data as a feature remains unexplored. This paper presents lightweight machine learning (ML) algorithms to perform CSF lumen segmentation in spinal, utilizing sets of velocity-encoded images or maps as a feature. The Dataset contains 57 PC-MRI slabs by 3T MRI scanner from control and idiopathic scoliosis participants are involved to collect data. The ML models are trained with 2176 time series images. Different cardiac periods image (frame) numbers of PC-MRIs are interpolated in the preprocessing step to align to features of equal size. The fivefold cross-validation procedure is used to estimate the success of the ML models. Additionally, the study focusses on enhancing the interpretability of the highest-accuracy eXtreme gradient boosting (XGB) model by applying the shapley additive explanations (SHAP) technique. The XGB algorithm presented its highest accuracy, with an average fivefold accuracy of 0.99% precision, 0.95% recall, and 0.97% F1 score. We evaluated the significance of each pulsatile feature's contribution to predictions, offering a more profound understanding of the model's behavior in distinguishing CSF lumen pixels with SHAP. Introducing a novel approach in the field, develop ML models offer comprehension into feature extraction and selection from PC-MRI pulsatile data. Moreover, the explained ML model offers novel and valuable insights to domain experts, contributing to an enhanced scholarly understanding of CSF dynamics.

摘要

脑脊液(CSF)复杂行为的分析在疾病诊断中变得越来越重要。由流动的脑脊液速度形成的相位对比磁共振成像(PC-MRI)信号变化表现为一组速度编码图像或图谱,在医学成像背景下可视为信号数据,能够评估整个心动周期中的搏动模式。然而,在PC-MRI图像中自动分割脑脊液区域具有挑战性,且利用搏动数据作为特征实现一种可解释的机器学习方法仍未得到探索。本文提出了轻量级机器学习(ML)算法,以利用速度编码图像或图谱集作为特征,对脊柱中的脑脊液腔进行分割。该数据集包含来自对照组和特发性脊柱侧凸参与者的57个由3T MRI扫描仪采集的PC-MRI层厚图像。ML模型使用2176个时间序列图像进行训练。在预处理步骤中对不同心动周期的PC-MRI图像(帧数)进行插值,以使其与大小相等的特征对齐。采用五折交叉验证程序来评估ML模型的成功率。此外,该研究专注于通过应用Shapley加法解释(SHAP)技术来提高最高准确率的极端梯度提升(XGB)模型的可解释性。XGB算法表现出最高的准确率,平均五折准确率为精确率0.99%、召回率0.95%和F1分数0.97%。我们评估了每个搏动特征对预测贡献的显著性,通过SHAP更深入地理解模型在区分脑脊液腔像素方面的行为。在该领域引入一种新方法,开发的ML模型有助于理解从PC-MRI搏动数据中进行特征提取和选择。此外,可解释的ML模型为领域专家提供了新颖且有价值的见解,有助于增强对脑脊液动力学的学术理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a49/11294568/fb684c0590c8/41598_2024_67928_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验