H Elsayed Abdelrahman, Cao Xueyuan, Marrero Richard J, Nguyen Nam H K, Wu Huiyun, Ni Yonhui, Ribeiro Raul C, Tobias Herold, Valk Peter J, Béliveau François, Richard-Carpentier Guillaume, Hébert Josée, Zwaan C Michel, Gamis Alan, Kolb Edward Anders, Aplenc Richard, Alonzo Todd A, Meshinchi Soheil, Rubnitz Jeffrey, Pounds Stanley, Lamba Jatinder K
Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA.
Department of Health Promotion and Disease Prevention, University of Tennessee Health Science Center, Memphis, TN, USA.
NPJ Precis Oncol. 2024 Aug 1;8(1):168. doi: 10.1038/s41698-024-00643-5.
In this study, we leveraged machine-learning tools by evaluating expression of genes of pharmacological relevance to standard-AML chemotherapy (ara-C/daunorubicin/etoposide) in a discovery-cohort of pediatric AML patients (N = 163; NCT00136084 ) and defined a 5-gene-drug resistance score (ADE-RS5) that was predictive of outcome (high MRD1 positivity p = 0.013; lower EFS p < 0.0001 and OS p < 0.0001). ADE-RS5 was integrated with a previously defined leukemic-stemness signature (pLSC6) to classify patients into four groups. ADE-RS5, pLSC6 and integrated-score was evaluated for association with outcome in one of the largest assembly of ~3600 AML patients from 10 independent cohorts (1861 pediatric and 1773 adult AML). Patients with high ADE-RS5 had poor outcome in validation cohorts and the previously reported pLSC6 maintained strong significant association in all validation cohorts. For pLSC6/ADE-RS5-integrated-score analysis, using Group-1 (low-scores for ADE-RS5 and pLSC6) as reference, Group-4 (high-scores for ADE-RS5 and pLSC6) showed worst outcome (EFS: p < 0.0001 and OS: p < 0.0001). Groups-2/3 (one high and one low-score) showed intermediate outcome (p < 0.001). Integrated score groups remained an independent predictor of outcome in multivariable-analysis after adjusting for established prognostic factors (EFS: Group 2 vs. 1, HR = 4.68, p < 0.001, Group 3 vs. 1, HR = 3.22, p = 0.01, and Group 4 vs. 1, HR = 7.26, p < 0.001). These results highlight the significant prognostic value of transcriptomics-based scores capturing disease aggressiveness through pLSC6 and drug resistance via ADE-RS5. The pLSC6 stemness score is a significant predictor of outcome and associates with high-risk group features, the ADE-RS5 drug resistance score adds further value, reflecting the clinical utility of simultaneous testing of both for optimizing treatment strategies.
在本研究中,我们通过评估与标准急性髓系白血病(AML)化疗(阿糖胞苷/柔红霉素/依托泊苷)相关的药理基因在一组小儿AML患者(N = 163;NCT00136084)中的表达,利用机器学习工具,并定义了一个5基因耐药评分(ADE-RS5),该评分可预测预后(高微小残留病1阳性,p = 0.013;较低的无事件生存期,p < 0.0001,总生存期,p < 0.0001)。ADE-RS5与先前定义的白血病干性特征(pLSC6)相结合,将患者分为四组。在来自10个独立队列的约3600例AML患者(1861例小儿和1773例成人AML)的最大样本集中,评估了ADE-RS5、pLSC6和综合评分与预后的相关性。在验证队列中,ADE-RS5高的患者预后较差,先前报道的pLSC6在所有验证队列中均保持强烈的显著相关性。对于pLSC6/ADE-RS5综合评分分析,以第1组(ADE-RS5和pLSC6低评分)为参照,第4组(ADE-RS5和pLSC6高评分)显示出最差的预后(无事件生存期:p < 0.0001,总生存期:p < 0.0001)。第2/3组(一个高评分和一个低评分)显示出中等预后(p < 0.001)。在调整既定的预后因素后,综合评分组在多变量分析中仍然是预后的独立预测因素(无事件生存期:第2组与第1组相比,HR = 4.68,p < 0.001,第3组与第1组相比,HR = 3.22,p = 0.01,第4组与第1组相比,HR = 7.26,p < 0.001)。这些结果突出了基于转录组学的评分通过pLSC6捕捉疾病侵袭性和通过ADE-RS5反映耐药性的显著预后价值。pLSC6干性评分是预后的重要预测因素,与高危组特征相关,ADE-RS5耐药评分进一步增加了价值,反映了同时检测两者以优化治疗策略的临床实用性。