Tzortzinis Georgios, Filippatos Angelos, Wittig Jan, Gude Maik, Provost Aidan, Ai Chengbo, Gerasimidis Simos
Institute of Lightweight Engineering and Polymer Technology, Technische Universität Dresden, Dresden, Germany.
Dresden Center for Intelligent Materials, Technische Universität Dresden, Dresden, Germany.
Commun Eng. 2024 Aug 1;3(1):106. doi: 10.1038/s44172-024-00255-8.
For steel bridges, corrosion has historically led to bridge failures, resulting in fatalities and injuries. To enhance public safety and prevent such incidents, authorities mandate in-situ evaluation and reporting of corroded members. The current inspection and evaluation protocol is characterized by intense labor, traffic delays, and poor capacity predictions. Here we combine full-scale experimental testing of a decommissioned girder, 3D laser scanning, and convolutional neural networks (CNNs) to introduce a continuous inspection and evaluation framework. Classification and regression CNNs are trained on a databank of 1,421 naturally inspired corrosion scenarios, generated computationally based on point clouds of three corroded girders collected in lab conditions. Results indicate low errors of up to 2.0% and 3.3%, respectively. The methodology is validated on eight real corroded ends and implemented for the evaluation of an in-service bridge. This framework promises significant advancements in assessing aging bridge infrastructure with higher accuracy and efficiency compared to analytical or semi-analytical approaches.
对于钢桥而言,腐蚀在历史上曾导致桥梁故障,造成人员伤亡。为提高公共安全并防止此类事故发生,当局要求对腐蚀构件进行现场评估和报告。当前的检查和评估方案存在劳动强度大、交通延误以及容量预测不佳等问题。在此,我们结合对一根退役梁的全尺寸实验测试、三维激光扫描和卷积神经网络(CNN),引入了一个连续检查和评估框架。分类和回归卷积神经网络在一个包含1421个自然启发式腐蚀场景的数据库上进行训练,这些场景是基于在实验室条件下收集的三根腐蚀梁的点云通过计算生成的。结果表明误差分别低至2.0%和3.3%。该方法在八个实际腐蚀端部上得到验证,并用于一座在用桥梁的评估。与分析或半分析方法相比,该框架有望在更准确、高效地评估老化桥梁基础设施方面取得重大进展。