Suppr超能文献

基于深度学习并集成BIM的大跨度桥梁腐蚀检测

Deep learning-based corrosion inspection of long-span bridges with BIM integration.

作者信息

Hattori Kotaro, Oki Keiichi, Sugita Aya, Sugiyama Takeshi, Chun Pang-Jo

机构信息

IHI Infrastructure Systems Co., Ltd, 3 Ohama Nishimachi, Sakai, Osaka, 590-0977, Japan.

JB Toll Systems Co., Ltd, 3-2-17 Isobe-dori, Chuo-ku, Kobe, Hyogo Prefecture, 651-0084, Japan.

出版信息

Heliyon. 2024 Jul 30;10(15):e35308. doi: 10.1016/j.heliyon.2024.e35308. eCollection 2024 Aug 15.

Abstract

Infrastructure operation and maintenance is essential for societal safety, particularly in Japan where the aging of infrastructures built during the period of high economic growth is advancing. However, there are issues such as a shortage of engineers and inefficiencies in work, requiring improvements in efficiency and automation for their resolution. Nevertheless, there are still many inefficiencies in the current procedures for bridge inspections. Usually, inspection engineers check for damage on bridges through close visual inspections at the site, then photograph the damaged parts, measure the size by touch, and create a report. A three-dimensional representation, considering the front and back of the structural elements, is needed for identifying damage, necessitating the creation of multi-directional three-dimensional drawings. However, this process is labor-intensive and prone to errors. Furthermore, due to the lack of uniformity in records, it is challenging to refer to past inspection histories. Especially for long bridges, without resolving such issues, the required labor and the number of mistakes could exceed acceptable limits, making proper management difficult. Therefore, in this study, we developed a method for automatically measuring the position and area of corroded parts by capturing images of the lower surface of the stiffening girder using a bridge inspection vehicle and utilizing image diagnosis technology. By integrating these results into a 3D model called BIM (Building Information Modeling), it becomes possible to manage the bridge more efficiently. We verified this method on actual long bridges and confirmed its effectiveness.

摘要

基础设施的运营和维护对社会安全至关重要,在日本尤其如此,因为经济高速增长时期建造的基础设施正在加速老化。然而,存在工程师短缺和工作效率低下等问题,需要提高效率和实现自动化来解决这些问题。尽管如此,目前桥梁检查程序仍存在许多效率低下的情况。通常,检查工程师通过在现场进行近距离目视检查来检查桥梁是否受损,然后拍摄受损部位的照片,通过触摸测量尺寸,并撰写报告。为了识别损伤,需要考虑结构构件的正面和背面的三维表示,这就需要创建多方向的三维图纸。然而,这个过程劳动强度大且容易出错。此外,由于记录缺乏统一性,参考过去的检查历史具有挑战性。特别是对于长桥,如果不解决这些问题,所需的劳动力和错误数量可能会超过可接受的限度,从而难以进行妥善管理。因此,在本研究中,我们开发了一种方法,通过使用桥梁检查车拍摄加劲梁下表面的图像并利用图像诊断技术来自动测量腐蚀部位的位置和面积。通过将这些结果集成到一个名为BIM(建筑信息模型)的三维模型中,可以更有效地管理桥梁。我们在实际的长桥上验证了这种方法,并证实了其有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44ad/11336626/bef2bb41cb3c/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验