Barton Kelsey E, Anthamatten Peter J, Adgate John L, McKenzie Lisa M, Starling Anne P, Berg Kevin, Murphy Robert C, Richardson Kristy
Toxicology and Environmental Epidemiology Office, Colorado Department of Public Health & Environment, Denver, CO, USA.
Department of Environmental & Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
J Expo Sci Environ Epidemiol. 2025 May;35(3):414-424. doi: 10.1038/s41370-024-00705-7. Epub 2024 Aug 1.
Per and polyfluoroalkyl substances (PFAS), a class of environmentally and biologically persistent chemicals, have been used across many industries since the middle of the 20 century. Some PFAS have been linked to adverse health effects.
Our objective was to incorporate known and potential PFAS sources, physical characteristics of the environment, and existing PFAS water sampling results into a PFAS risk prediction map that may be used to develop a PFAS water sampling prioritization plan for the Colorado Department of Public Health and Environment (CDPHE).
We used random forest classification to develop a predictive surface of potential groundwater contamination from two PFAS, perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA). The model predicted PFAS risk at locations without sampling data into one of three risk categories after being "trained" with existing PFAS water sampling data. We used prediction results, variable importance ranking, and population characteristics to develop recommendations for sampling prioritization.
Sensitivity and precision ranged from 58% to 90% in the final models, depending on the risk category. The model and prioritization approach identified private wells in specific census blocks, as well as schools, mobile home parks, and public water systems that rely on groundwater as priority sampling locations. We also identified data gaps including areas of the state with limited sampling and potential source types that need further investigation.
This work uses random forest classification to predict the risk of groundwater contamination from two per- and polyfluoroalkyl substances (PFAS) across the state of Colorado, United States. We developed the prediction model using data on known and potential PFAS sources and physical characteristics of the environment, and "trained" the model using existing PFAS water sampling results. This data-driven approach identifies opportunities for PFAS water sampling prioritization as well as information gaps that, if filled, could improve model predictions. This work provides decision-makers information to effectively use limited resources towards protection of populations most susceptible to the impacts of PFAS exposure.
全氟和多氟烷基物质(PFAS)是一类在环境和生物体内具有持久性的化学物质,自20世纪中叶以来已在许多行业中使用。一些PFAS与不良健康影响有关。
我们的目标是将已知和潜在的PFAS来源、环境的物理特征以及现有的PFAS水样检测结果纳入一个PFAS风险预测地图,该地图可用于为科罗拉多州公共卫生与环境部(CDPHE)制定PFAS水样采集优先级计划。
我们使用随机森林分类法来生成一个预测表面,以预测两种PFAS(全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA))对地下水的潜在污染。在用现有的PFAS水样检测数据对模型进行“训练”后,该模型将没有采样数据地点的PFAS风险预测为三个风险类别之一。我们利用预测结果、变量重要性排名和人口特征来制定采样优先级建议。
最终模型的灵敏度和精确度在58%至90%之间,具体取决于风险类别。该模型和优先级确定方法确定了特定普查街区中的私人水井,以及学校、移动房屋公园和依赖地下水的公共供水系统为优先采样地点。我们还确定了数据缺口,包括该州采样有限的地区以及需要进一步调查的潜在来源类型。
本研究使用随机森林分类法预测美国科罗拉多州两种全氟和多氟烷基物质(PFAS)对地下水的污染风险。我们利用已知和潜在的PFAS来源数据以及环境的物理特征来开发预测模型,并使用现有的PFAS水样检测结果对模型进行“训练”。这种数据驱动的方法确定了PFAS水样采集优先级的机会以及信息缺口,填补这些缺口可能会改善模型预测。这项工作为决策者提供信息,以便有效地利用有限资源来保护最易受PFAS暴露影响的人群。