Suppr超能文献

使用可解释的机器学习模型理解药物特性预测。

Understanding predictions of drug profiles using explainable machine learning models.

作者信息

König Caroline, Vellido Alfredo

机构信息

Intelligent Data Science and Artificial Intelligence (IDEAI-UPC) Research Centre, Universitat Politècnica de Catalunya (UPC Barcelona Tech), Jordi Girona 1-3, Barcelona, 08034, Catalonia, Spain.

Department of Computer Science, Universitat Politècnica de Catalunya (UPC Barcelona Tech), Jordi Girona 1-3, Barcelona, 08034, Catalonia, Spain.

出版信息

BioData Min. 2024 Aug 1;17(1):25. doi: 10.1186/s13040-024-00378-w.

Abstract

PURPOSE

The analysis of absorption, distribution, metabolism, and excretion (ADME) molecular properties is of relevance to drug design, as they directly influence the drug's effectiveness at its target location. This study concerns their prediction, using explainable Machine Learning (ML) models. The aim of the study is to find which molecular features are relevant to the prediction of the different ADME properties and measure their impact on the predictive model.

METHODS

The relative relevance of individual features for ADME activity is gauged by estimating feature importance in ML models' predictions. Feature importance is calculated using feature permutation and the individual impact of features is measured by SHAP additive explanations.

RESULTS

The study reveals the relevance of specific molecular descriptors for each ADME property and quantifies their impact on the ADME property prediction.

CONCLUSION

The reported research illustrates how explainable ML models can provide detailed insights about the individual contributions of molecular features to the final prediction of an ADME property, as an effort to support experts in the process of drug candidate selection through a better understanding of the impact of molecular features.

摘要

目的

吸收、分布、代谢和排泄(ADME)分子特性分析与药物设计相关,因为它们直接影响药物在其靶点位置的有效性。本研究涉及使用可解释的机器学习(ML)模型对其进行预测。该研究的目的是找出哪些分子特征与不同ADME特性的预测相关,并衡量它们对预测模型的影响。

方法

通过估计ML模型预测中的特征重要性来衡量各个特征对ADME活性的相对相关性。使用特征排列计算特征重要性,并通过SHAP加性解释来衡量特征的个体影响。

结果

该研究揭示了特定分子描述符与每种ADME特性的相关性,并量化了它们对ADME特性预测的影响。

结论

所报道的研究说明了可解释的ML模型如何能够提供关于分子特征对ADME特性最终预测的个体贡献的详细见解,以此作为通过更好地理解分子特征的影响来支持专家进行候选药物选择过程的一种努力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/765f/11293102/1eb5f560214e/13040_2024_378_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验