Suppr超能文献

ZrMOF 杂化材料的高危甲状腺结节的高性能代谢组学分析。

High-Performance Metabolic Profiling of High-Risk Thyroid Nodules by ZrMOF Hybrids.

机构信息

Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

ACS Nano. 2024 Aug 13;18(32):21336-21346. doi: 10.1021/acsnano.4c05700. Epub 2024 Aug 1.

Abstract

Thyroid nodules (TNs) have emerged as the most prevalent endocrine disorder in China. Fine-needle aspiration (FNA) remains the standard diagnostic method for assessing TN malignancy, although a majority of FNA results indicate benign conditions. Balancing diagnostic accuracy while mitigating overdiagnosis in patients with benign nodules poses a significant clinical challenge. Precise, noninvasive, and high-throughput screening methods for high-risk TN diagnosis are highly desired but remain less explored. Developing such approaches can improve the accuracy of noninvasive methods like ultrasound imaging and reduce overdiagnosis of benign nodule patients caused by invasive procedures. Herein, we investigate the application of gold-doped zirconium-based metal-organic framework (ZrMOF/Au) nanostructures for metabolic profiling of thyroid diseases. This approach enables the efficient extraction of urine metabolite fingerprints with high throughput, low background noise, and reproducibility. Utilizing partial least-squares discriminant analysis and four machine learning models, including neural network (NN), random forest (RF), logistic regression (LR), and support vector machine (SVM), we achieved an enhanced diagnostic accuracy (98.6%) for discriminating thyroid cancer (TC) from low-risk TNs by using a diagnostic panel. Through the analysis of metabolic differences, potential pathway changes between benign nodule and malignancy are identified. This work explores the potential of rapid thyroid disease screening using the ZrMOF/Au-assisted LDI-MS platform, providing a potential method for noninvasive screening of thyroid malignant tumors. Integrating this approach with imaging technologies such as ultrasound can enhance the reliability of noninvasive diagnostic methods for malignant tumor screening, helping to prevent unnecessary invasive procedures and reducing the risk of overdiagnosis and overtreatment in patients with benign nodules.

摘要

甲状腺结节(TNs)已成为中国最常见的内分泌疾病。细针穿刺抽吸(FNA)仍然是评估 TN 恶性肿瘤的标准诊断方法,尽管大多数 FNA 结果表明为良性情况。在平衡诊断准确性的同时,减轻良性结节患者的过度诊断是一个重大的临床挑战。精确、非侵入性和高通量的高危 TN 诊断筛选方法是非常需要的,但仍未得到充分探索。开发此类方法可以提高超声成像等非侵入性方法的准确性,并减少因侵入性程序而导致的良性结节患者的过度诊断。在此,我们研究了金掺杂锆基金属有机骨架(ZrMOF/Au)纳米结构在甲状腺疾病代谢谱分析中的应用。该方法能够高效提取具有高通量、低背景噪声和可重复性的尿液代谢指纹图谱。我们利用偏最小二乘判别分析和包括神经网络(NN)、随机森林(RF)、逻辑回归(LR)和支持向量机(SVM)在内的四种机器学习模型,实现了使用诊断面板区分甲状腺癌(TC)和低危 TN 的增强诊断准确性(98.6%)。通过代谢差异分析,确定了良性结节和恶性之间潜在的通路变化。这项工作探索了使用 ZrMOF/Au 辅助 LDI-MS 平台进行快速甲状腺疾病筛查的潜力,为甲状腺恶性肿瘤的非侵入性筛查提供了一种潜在方法。将这种方法与超声等成像技术相结合,可以提高恶性肿瘤筛查的非侵入性诊断方法的可靠性,有助于防止不必要的侵入性程序,并减少良性结节患者的过度诊断和过度治疗风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验