Suppr超能文献

利用神经网络提高光学混沌通信的解密质量。

Improving decryption quality of optical chaos communication using neural networks.

作者信息

Fan Xiaoqi, Mao Xiaoxin, Wang Longsheng, Fu Songnian, Wang Anbang, Wang Yuncai

出版信息

Opt Lett. 2024 Aug 1;49(15):4445-4448. doi: 10.1364/OL.531834.

Abstract

Optical chaos communication is a promising secure transmission technique because of the advantages of high speed and compatibility with existing fiber-optic systems. The deterioration of chaotic synchronization quality caused by fiber optic transmission impairments affects the quality of recovery of information, especially high-order modulated signals. Here, we demonstrate that the use of a convolutional neural network (CNN) with a bidirectional long short-term memory (LSTM) layer can reduce the decryption BER in an optical chaos communication system based on common-signal-induced semiconductor laser synchronization. The performance of a neural network is investigated as a function of network parameters and chaos synchronization coefficient. Experimental results show that the BER of 16-ary quadrature-amplitude-modulation (16QAM) signal after 100-km fiber transmission is decreased from 3.05 × 10 to below the soft-decision forward-error-correction (SD-FEC) threshold of 2.0 × 10.

摘要

光学混沌通信由于具有高速以及与现有光纤系统兼容的优点,是一种很有前景的安全传输技术。光纤传输损伤导致的混沌同步质量恶化会影响信息恢复的质量,尤其是高阶调制信号。在此,我们证明,在基于共信号诱导半导体激光同步的光学混沌通信系统中,使用具有双向长短期记忆(LSTM)层的卷积神经网络(CNN)可以降低解密误码率。研究了神经网络性能与网络参数和混沌同步系数的函数关系。实验结果表明,100公里光纤传输后16进制正交幅度调制(16QAM)信号的误码率从3.05×10降至低于2.0×10的软判决前向纠错(SD-FEC)阈值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验