Biomedical Innovation Center and Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
J Appl Microbiol. 2024 Aug 5;135(8). doi: 10.1093/jambio/lxae192.
Hypervirulent Klebsiella pneumoniae (hvKp) causes invasive community-acquired infections in healthy individuals, and hypermucoviscosity (HMV) is the main phenotype associated with hvKp. This study investigates the impact of microaerobic environment availability on the mucoviscosity of K. pneumoniae.
By culturing 25 clinical strains under microaerobic and aerobic environments, we observed a notable reduction in mucoviscosity in microaerobic environments. RNA sequencing and qRT-PCR revealed downregulated expressions of capsule synthesis genes (galf, orf2, wzi, wza, wzb, wzc, wcaj, manC, manB, and ugd) and regulatory genes (rmpA, rmpD, and rmpC) under microaerobic conditions. Transmission electron microscopy and Indian ink staining analysis were performed, revealing that the capsular thickness of K. pneumoniae decreased by half in microaerobic conditions compared to aerobic conditions. Deletion of rmpD and rmpC caused the loss of the HMV phenotype in both aerobic and microaerobic conditions. However, compared to wild-type strain in microaerobic condition, only rmpD overexpression strain, and not rmpC overexpression strain, displayed a significant increase in capsule thickness in microaerobic conditions.
Microaerobic conditions can suppress the mucoviscosity of K. pneumoniae, but this suppression can be overcome by altering the expression of rmpD, indicating a specific function for rmpD in the oxygen environmental adaptation of K. pneumoniae.
高毒力肺炎克雷伯菌(hvKp)可导致健康个体发生侵袭性社区获得性感染,而高黏液性(HMV)是与 hvKp 相关的主要表型。本研究探讨了微需氧环境的存在对肺炎克雷伯菌黏液性的影响。
通过在微需氧和需氧环境下培养 25 株临床分离株,我们观察到微需氧环境下黏液性显著降低。RNA 测序和 qRT-PCR 显示,在微需氧条件下,荚膜合成基因(galf、orf2、wzi、wza、wzb、wzc、wcaj、manC、manB 和 ugd)和调节基因(rmpA、rmpD 和 rmpC)的表达下调。进行透射电子显微镜和印度墨水染色分析,结果显示,与需氧条件相比,微需氧条件下肺炎克雷伯菌荚膜厚度减少了一半。rmpD 和 rmpC 的缺失导致在有氧和微需氧条件下均丧失 HMV 表型。然而,与微需氧条件下的野生型菌株相比,只有 rmpD 过表达菌株而非 rmpC 过表达菌株在微需氧条件下显示出荚膜厚度的显著增加。
微需氧条件可抑制肺炎克雷伯菌的黏液性,但这种抑制可通过改变 rmpD 的表达来克服,表明 rmpD 在肺炎克雷伯菌对氧环境的适应中具有特定功能。