Wu Kai, Li Ao, Tan Jin, Zhou Fu, Yan Hanbing, Wang Pengcheng, Xie Ting, Zeng Qing, Han Cuiping, Liu Qi, Li Baohua
College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.
Shenzhen Research Institute, Hunan University, Shenzhen, 518000, China.
Angew Chem Int Ed Engl. 2024 Oct 24;63(44):e202410347. doi: 10.1002/anie.202410347. Epub 2024 Sep 17.
Polyethylene oxide (PEO)-based all-solid-state lithium metal batteries (ASSLMBs) are strongly hindered by the fast dendrite growth at the Li metal/electrolyte interface, especially under large rates. The above issue stems from the suboptimal interfacial chemistry and poor Li transport kinetics during cycling. Herein, a SnF-catalyzed lithiophilic-lithiophobic gradient solid electrolyte interphase (SCG-SEI) of LiSn/LiF-LiO is in situ formed. The superior ionic LiF-LiO rich upper layer (17.1 nm) possesses high interfacial energy and fast Li diffusion channels, wherein lithiophilic LiSn alloy layer (8.4 nm) could highly reduce the nucleation overpotential with lower diffusion barrier and promote rapid electron transportation for reversible Li plating/stripping. Simultaneously, the insoluble SnF-coordinated PEO promotes the rapid Li ion transport in the bulk phase. As a result, an over 46.7 and 3.5 times improvements for lifespan and critical current density of symmetrical cells are achieved, respectively. Furthermore, LiFePO-based ASSLMBs deliver a recorded cycling performance at 5 C (over 1000 cycles with a capacity retention of 80.0 %). More importantly, impressive electrochemical performances and safety tests with LiNiMnCoO and pouch cell with LiFePO, even under extreme conditions (i.e., 100 °C), are also demonstrated, reconfirmed the importance of lithiophilic-lithiophobic gradient interfacial chemistry in the design of high-rate ASSLMBs for safety applications.
基于聚环氧乙烷(PEO)的全固态锂金属电池(ASSLMBs)在锂金属/电解质界面处的快速枝晶生长受到严重阻碍,尤其是在高倍率下。上述问题源于循环过程中不理想的界面化学和较差的锂传输动力学。在此,原位形成了一种由SnF催化的亲锂-疏锂梯度固体电解质界面(SCG-SEI),其组成为LiSn/LiF-LiO。富含LiF-LiO的上层(17.1 nm)具有优异的离子导电性、高界面能和快速的锂扩散通道,其中亲锂的LiSn合金层(8.4 nm)可以通过降低扩散势垒来大幅降低成核过电位,并促进快速的电子传输以实现可逆的锂电镀/剥离。同时,不溶性的SnF配位PEO促进了本体相中锂离子的快速传输。结果,对称电池的寿命和临界电流密度分别提高了46.7倍和3.5倍以上。此外,基于LiFePO的ASSLMBs在5 C下展现出创纪录的循环性能(超过1000次循环,容量保持率为80.0 %)。更重要的是,即使在极端条件下(即100 °C),使用LiNiMnCoO和LiFePO软包电池也展示了令人印象深刻的电化学性能和安全性测试,再次证实了亲锂-疏锂梯度界面化学在设计用于安全应用的高倍率ASSLMBs中的重要性。