Suppr超能文献

提高基于PbTe的热电模块的长期稳定性:从纳米结构到封装模块架构

Improving the Long-Term Stability of PbTe-Based Thermoelectric Modules: From Nanostructures to Packaged Module Architecture.

作者信息

Sauerschnig Philipp, Saitou Noriyuki, Koshino Masanori, Ishida Takao, Yamamoto Atsushi, Ohta Michihiro

机构信息

Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan.

Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8564, Japan.

出版信息

ACS Appl Mater Interfaces. 2024 Sep 4;16(35):46421-46432. doi: 10.1021/acsami.4c07148. Epub 2024 Aug 2.

Abstract

Nanostructured lead telluride PbTe is among the best-performing thermoelectric materials, for both p- and n-types, for intermediate temperature applications. However, the fabrication of power-generating modules based on nanostructured PbTe still faces challenges related to the stability of the materials, especially nanoprecipitates, and the bonding of electric contacts. In this study, in situ high-temperature transmission electron microscopy observation confirmed the stability of nanoprecipitates in p-type PbNaGeTe up to at least ∼786 K. Then, a new architecture for a packaged module was developed for improving durability, preventing unwanted interaction between thermoelectric materials and electrodes, and for reducing thermal stress-induced crack formation. Finite element method simulations of thermal stresses and power generation characteristics were utilized to optimize the new module architecture. Legs of nanostructured p-type PbNaGeTe (maximum ∼ 2.2 at 795 K) and nanostructured n-type PbGaTe (maximum ∼ 1.5 at 748 K) were stacked with flexible Fe-foil diffusion barrier layers and Ag-foil-interconnecting electrodes forming stable interfaces between electrodes and PbTe in the packaged module. For the bare module, a maximum conversion efficiency of ∼6.8% was obtained for a temperature difference of ∼480 K. Only ∼3% reduction in output power and efficiency was found after long-term operation of the bare module for ∼740 h (∼31 days) at a hot-side temperature of ∼673 K, demonstrating good long-term stability.

摘要

纳米结构碲化铅(PbTe)是用于中温应用的p型和n型最佳热电材料之一。然而,基于纳米结构PbTe的发电模块制造仍面临与材料稳定性相关的挑战,特别是纳米沉淀物以及电接触的键合。在本研究中,原位高温透射电子显微镜观察证实了p型PbNaGeTe中纳米沉淀物在至少约786 K的温度下具有稳定性。然后,开发了一种用于封装模块的新架构,以提高耐用性、防止热电材料与电极之间的不必要相互作用,并减少热应力引起的裂纹形成。利用热应力和发电特性的有限元方法模拟来优化新的模块架构。纳米结构的p型PbNaGeTe(在795 K时最大值约为2.2)和纳米结构的n型PbGaTe(在748 K时最大值约为1.5)的腿与柔性铁箔扩散阻挡层和银箔互连电极堆叠在一起,在封装模块中形成电极与PbTe之间的稳定界面。对于裸模块,在约480 K的温差下获得了约6.8%的最大转换效率。在约673 K的热侧温度下对裸模块进行约740小时(约31天)的长期运行后,发现输出功率和效率仅降低了约3%,表明具有良好的长期稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验