Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom.
Angew Chem Int Ed Engl. 2024 Nov 25;63(48):e202409192. doi: 10.1002/anie.202409192. Epub 2024 Oct 29.
Semi-biological photosynthesis combines synthetic photosensitizers with microbial catalysts to produce sustainable fuels and chemicals from CO. However, the inefficient transfer of photoexcited electrons to microbes leads to limited CO utilization, restricting the catalytic performance of such biohybrid assemblies. Here, we introduce a biological engineering solution to address the inherently sluggish electron uptake mechanism of a methanogen, Methanosarcina barkeri (M. barkeri), by coculturing it with an electron transport specialist, Geobacter sulfurreducens KN400 (KN400), an adapted strain rich with multiheme c-type cytochromes (c-Cyts) and electrically conductive protein filaments (e-PFs) made of polymerized c-Cyts with enhanced capacity for extracellular electron transfer (EET). Integration of this M. barkeri-KN400 co-culture with a synthetic photosensitizer, carbon nitride, demonstrates that c-Cyts and e-PFs, emanating from live KN400, transport photoexcited electrons efficiently from the carbon nitride to M. barkeri for methanogenesis with remarkable long-term stability and selectivity. The demonstrated cooperative interaction between two microbes via direct interspecies electron transfer (DIET) and the photosensitizer to assemble a semi-biological photocatalyst introduces an ecosystem engineering strategy in solar chemistry to drive sustainable chemical reactions.
半生物光合作用将合成光敏剂与微生物催化剂结合起来,从 CO 中生产可持续燃料和化学品。然而,光激发电子向微生物的低效传递导致 CO 利用有限,限制了这种生物杂化组件的催化性能。在这里,我们引入了一种生物工程解决方案,通过共培养产甲烷菌 Methanosarcina barkeri (M. barkeri) 和电子传递专家 Geobacter sulfurreducens KN400 (KN400) 来解决其固有的电子摄取机制缓慢的问题,KN400 是一种适应性菌株,富含多血红素 c 型细胞色素 (c-Cyts) 和由聚合 c-Cyts 制成的导电蛋白丝 (e-PFs),具有增强的细胞外电子转移 (EET) 能力。将这种 M. barkeri-KN400 共培养物与合成光敏剂氮化碳结合起来,证明了来自活 KN400 的 c-Cyts 和 e-PFs 可以有效地将光激发电子从氮化碳传输到 M. barkeri 进行甲烷生成,具有显著的长期稳定性和选择性。通过直接种间电子转移 (DIET) 和光敏剂在两个微生物之间展示的协同相互作用来组装半生物光催化剂,为太阳能化学中的可持续化学反应引入了一种生态系统工程策略。