Department of Microbiology, University of Massachusetts Amherstgrid.266683.f, Morrill IV N Science Center, Amherst, Massachusetts, USA.
College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.
Appl Environ Microbiol. 2022 Jan 11;88(1):e0162221. doi: 10.1128/AEM.01622-21. Epub 2021 Oct 20.
The multi-heme -type cytochrome OmcS is one of the central components used for extracellular electron transport in the Geobacter sulfurreducens strain DL-1, but its role in other microbes, including other strains of G. sulfurreducens, is currently a matter of debate. Therefore, we investigated the function of OmcS in the G. sulfurreducens strain KN400, which is even more effective in extracellular electron transfer than the DL-1 strain. We found that deleting from strain KN400 did not negatively impact the rate of Fe(III) oxide reduction and that the cells expressed conductive filaments. Replacing the wild-type pilin gene with the pilin gene eliminated the OmcS-deficient strain's ability to transport electrons to insoluble electron acceptors and diminished filament conductivity. These results are consistent with the concept that electrically conductive pili are the primary conduit for long-range electron transfer in G. sulfurreducens and closely related species. These findings, coupled with the lack of OmcS homologs in other microbes capable of extracellular electron transfer, suggest that OmcS is not a common critical component for extracellular electron transfer. OmcS has been widely studied and noted to be one of the key components for extracellular electron exchange by the Geobacter sulfurreducens strain DL-1. However, the true importance of OmcS warrants further investigation because it is well known that few bacteria, even within the Geobacteraceae family, contain OmcS homologs, and many bacteria that are capable of extracellular electron transfer lack an abundance of any type of outer surface -type cytochrome. In addition, there is debate about the importance of OmcS filaments in the mechanism of extracellular electron transport to insoluble electron acceptors by G. sulfurreducens. It has been suggested that filaments comprised of OmcS rather than e-pili are the predominant conductive filaments expressed by G. sulfurreducens. However, the results presented here, along with multiple other sources of evidence, indicate that OmcS filaments cannot be the primary, conductive, protein nanowires expressed by G. sulfurreducens.
多血红素细胞色素 OmcS 是用于 Geobacter sulfurreducens 菌株 DL-1 细胞外电子传输的核心组件之一,但它在其他微生物(包括其他 G. sulfurreducens 菌株)中的作用目前仍存在争议。因此,我们研究了 OmcS 在 G. sulfurreducens 菌株 KN400 中的功能,该菌株在细胞外电子传递方面比 DL-1 菌株更为有效。我们发现,从 KN400 菌株中删除 不会降低 Fe(III)氧化物还原的速率,并且细胞表达了导电丝。用 pilin 基因替换野生型 pilin 基因消除了 OmcS 缺陷菌株向不溶性电子受体传输电子的能力,并降低了丝的导电性。这些结果与导电菌毛是 G. sulfurreducens 和密切相关物种中长距离电子转移的主要通道的概念一致。这些发现,加上其他能够进行细胞外电子转移的微生物中缺乏 OmcS 同源物,表明 OmcS 不是细胞外电子转移的常见关键组件。 OmcS 已被广泛研究,并被认为是 Geobacter sulfurreducens 菌株 DL-1 进行细胞外电子交换的关键组件之一。然而,OmcS 的真正重要性需要进一步研究,因为众所周知,即使在 Geobacteraceae 家族内,也只有少数细菌含有 OmcS 同源物,而且许多能够进行细胞外电子转移的细菌缺乏大量任何类型的外表面型细胞色素。此外,关于 OmcS 丝在 G. sulfurreducens 向不溶性电子受体进行细胞外电子传输机制中的重要性存在争议。有人认为,由 OmcS 而不是 e-pili 组成的丝是 G. sulfurreducens 表达的主要导电丝。然而,这里提出的结果以及其他多个来源的证据表明,OmcS 丝不能是 G. sulfurreducens 表达的主要导电蛋白纳米线。