Suppr超能文献

基于具有Lipschitz连续边或面的曲线多面体网格上二阶问题的弱伽辽金有限元方法

Weak Galerkin finite element method for second order problems on curvilinear polytopal meshes with Lipschitz continuous edges or faces.

作者信息

Guan Qingguang, Queisser Gillian, Zhao Wenju

机构信息

School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS 39406.

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA.

出版信息

Comput Math Appl. 2023 Oct 15;148:282-292. doi: 10.1016/j.camwa.2023.08.017. Epub 2023 Sep 5.

Abstract

In this paper, we propose new basis functions defined on curved sides or faces of curvilinear elements (polygons or polyhedrons with curved sides or faces) for the weak Galerkin finite element method. Those basis functions are constructed by collecting linearly independent traces of polynomials on the curved sides/faces. We then analyze the modified weak Galerkin method for the elliptic equation and the interface problem on curvilinear polytopal meshes with Lipschitz continuous edges or faces. The method is designed to deal with less smooth complex boundaries or interfaces. Optimal convergence rates for and errors are obtained, and arbitrary high orders can be achieved for sufficiently smooth solutions. The numerical algorithm is discussed and tests are provided to verify theoretical findings.

摘要

在本文中,我们为弱伽辽金有限元方法提出了定义在曲线单元(具有弯曲边或面的多边形或多面体)的弯曲边或面上的新基函数。这些基函数是通过收集多项式在弯曲边/面上的线性无关迹线来构造的。然后,我们分析了在具有利普希茨连续边或面的曲线多面体网格上求解椭圆方程和界面问题的修正弱伽辽金方法。该方法旨在处理不太光滑的复杂边界或界面。得到了关于(H^1)和(L^2)误差的最优收敛率,并且对于足够光滑的解可以达到任意高阶。文中讨论了数值算法并给出了测试以验证理论结果。

相似文献

3
MIB Galerkin method for elliptic interface problems.用于椭圆型界面问题的MIB伽辽金方法。
J Comput Appl Math. 2014 Dec 15;272:195-220. doi: 10.1016/j.cam.2014.05.014.
5
A mixed virtual element method for Biot's consolidation model.一种用于比奥固结模型的混合虚拟单元法。
Comput Math Appl. 2022 Nov 15;126:31-42. doi: 10.1016/j.camwa.2022.09.005. Epub 2022 Sep 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验