文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

依赖Prdm16的抗原呈递细胞诱导对肠道抗原的耐受性。

Prdm16-dependent antigen-presenting cells induce tolerance to intestinal antigens.

作者信息

Fu Liuhui, Upadhyay Rabi, Pokrovskii Maria, Chen Francis M, Romero-Meza Gabriela, Griesemer Adam, Littman Dan R

机构信息

Department of Cell Biology, New York University School of Medicine, New York, NY, USA.

Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.

出版信息

bioRxiv. 2025 Mar 3:2024.07.23.604803. doi: 10.1101/2024.07.23.604803.


DOI:10.1101/2024.07.23.604803
PMID:39091750
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11291166/
Abstract

The gastrointestinal tract is continuously exposed to foreign antigens in food and commensal microbes with potential to induce adaptive immune responses. Peripherally induced T regulatory (pTreg) cells are essential for mitigating inflammatory responses to these agents. While RORγt antigen-presenting cells (RORγt-APCs) were shown to program gut microbiota-specific pTreg, their definition remains incomplete, and the APC responsible for food tolerance has remained elusive. Here, we identify a distinct subset of RORγt-APCs, designated tolerogenic dendritic cells (tDC), required for differentiation of both food- and microbiota-specific pTreg cells and for establishment of oral tolerance. tDC development and function require expression of the transcription factors Prdm16 and RORγt, as well as a unique cis-regulatory element. Gene expression, chromatin accessibility, and surface marker analysis establish tDC as myeloid in origin, distinct from ILC3, and sharing epigenetic profiles with classical DC. Upon genetic perturbation of tDC, we observe a substantial increase in food antigen-specific T helper 2 (Th2) cells in lieu of pTreg, leading to compromised tolerance in mouse models of asthma and food allergy. Single-cell analyses of freshly resected mesenteric lymph nodes from a human organ donor, as well as multiple specimens of human intestine and tonsil, reveal candidate tDC with co-expression of and and an extensive transcriptome shared with mice, highlighting an evolutionarily conserved role across species. Our findings suggest that a better understanding of how tDC develop and how they regulate T cell responses to food and microbial antigens could offer new insights into developing therapeutic strategies for autoimmune and allergic diseases as well as organ transplant tolerance.

摘要

胃肠道持续暴露于食物中的外来抗原和共生微生物,这些物质有可能诱导适应性免疫反应。外周诱导的调节性T细胞(pTreg)对于减轻对这些物质的炎症反应至关重要。虽然RORγt抗原呈递细胞(RORγt-APC)已被证明可编程肠道微生物群特异性pTreg,但它们的定义仍不完整,负责食物耐受性的APC一直难以捉摸。在这里,我们鉴定出RORγt-APC的一个独特亚群,称为耐受性树突状细胞(tDC),它是食物和微生物群特异性pTreg细胞分化以及建立口服耐受性所必需的。tDC的发育和功能需要转录因子Prdm16和RORγt的表达,以及一个独特的顺式调节元件。基因表达、染色质可及性和表面标志物分析确定tDC起源于髓系,与3型固有淋巴细胞(ILC3)不同,并与经典树突状细胞共享表观遗传特征。在对tDC进行基因扰动后,我们观察到食物抗原特异性辅助性T细胞2(Th2)细胞大量增加,而不是pTreg,导致哮喘和食物过敏小鼠模型中的耐受性受损。对一名人类器官供体新鲜切除的肠系膜淋巴结以及多份人类肠道和扁桃体标本进行单细胞分析,发现候选tDC同时表达特定标志物,并且与小鼠共享广泛的转录组,突出了跨物种进化保守的作用。我们的研究结果表明,更好地了解tDC如何发育以及它们如何调节T细胞对食物和微生物抗原的反应,可能为开发自身免疫性疾病、过敏性疾病以及器官移植耐受性的治疗策略提供新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/43a92f0f3da9/nihpp-2024.07.23.604803v3-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/0095d98d7e0f/nihpp-2024.07.23.604803v3-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/b65fe1632aa2/nihpp-2024.07.23.604803v3-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/b2448a97dd6e/nihpp-2024.07.23.604803v3-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/2b1b8fad7e43/nihpp-2024.07.23.604803v3-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/c60e16111010/nihpp-2024.07.23.604803v3-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/5598ea8f8495/nihpp-2024.07.23.604803v3-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/bbde167d853d/nihpp-2024.07.23.604803v3-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/7a3e1ebc8e24/nihpp-2024.07.23.604803v3-f0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/0d89a0e69029/nihpp-2024.07.23.604803v3-f0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/f4bee355124c/nihpp-2024.07.23.604803v3-f0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/47204dd5be47/nihpp-2024.07.23.604803v3-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/516725c66388/nihpp-2024.07.23.604803v3-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/b80bf3a0baeb/nihpp-2024.07.23.604803v3-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/840e10a20eb7/nihpp-2024.07.23.604803v3-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/43a92f0f3da9/nihpp-2024.07.23.604803v3-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/0095d98d7e0f/nihpp-2024.07.23.604803v3-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/b65fe1632aa2/nihpp-2024.07.23.604803v3-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/b2448a97dd6e/nihpp-2024.07.23.604803v3-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/2b1b8fad7e43/nihpp-2024.07.23.604803v3-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/c60e16111010/nihpp-2024.07.23.604803v3-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/5598ea8f8495/nihpp-2024.07.23.604803v3-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/bbde167d853d/nihpp-2024.07.23.604803v3-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/7a3e1ebc8e24/nihpp-2024.07.23.604803v3-f0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/0d89a0e69029/nihpp-2024.07.23.604803v3-f0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/f4bee355124c/nihpp-2024.07.23.604803v3-f0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/47204dd5be47/nihpp-2024.07.23.604803v3-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/516725c66388/nihpp-2024.07.23.604803v3-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/b80bf3a0baeb/nihpp-2024.07.23.604803v3-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/840e10a20eb7/nihpp-2024.07.23.604803v3-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/11887687/43a92f0f3da9/nihpp-2024.07.23.604803v3-f0005.jpg

相似文献

[1]
Prdm16-dependent antigen-presenting cells induce tolerance to intestinal antigens.

bioRxiv. 2025-3-3

[2]
PRDM16-dependent antigen-presenting cells induce tolerance to gut antigens.

Nature. 2025-4-14

[3]
Rorγt-positive dendritic cells are required for the induction of peripheral regulatory T cells in response to oral antigens.

Cell. 2025-5-15

[4]
Thetis cells induce food-specific Treg cell differentiation and oral tolerance.

bioRxiv. 2024-5-10

[5]
Novel antigen-presenting cell imparts T-dependent tolerance to gut microbiota.

Nature. 2022-10

[6]
Antigen-presenting cells as specialized drivers of intestinal T cell functions.

Immunity. 2024-10-8

[7]
A wave of Thetis cells imparts tolerance to food antigens early in life.

Science. 2025-5-15

[8]
Eosinophils Contribute to Oral Tolerance via Induction of RORγt-Positive Antigen-Presenting Cells and RORγt-Positive Regulatory T Cells.

Biomolecules. 2024-1-10

[9]
Contribution of Mesenteric Lymph Nodes and GALT to the Intestinal Foxp3+ Regulatory T-Cell Compartment.

Cell Mol Gastroenterol Hepatol. 2016-5

[10]
ILC3s select microbiota-specific regulatory T cells to establish tolerance in the gut.

Nature. 2022-10

本文引用的文献

[1]
RORγt-expressing dendritic cells are functionally versatile and evolutionarily conserved antigen-presenting cells.

Proc Natl Acad Sci U S A. 2025-3-4

[2]
An atlas of cells in the human tonsil.

Immunity. 2024-2-13

[3]
A distinct human cell type expressing MHCII and RORγt with dual characteristics of dendritic cells and type 3 innate lymphoid cells.

Proc Natl Acad Sci U S A. 2023-12-26

[4]
Regulatory T cells in the face of the intestinal microbiota.

Nat Rev Immunol. 2023-11

[5]
Dictionary learning for integrative, multimodal and scalable single-cell analysis.

Nat Biotechnol. 2024-2

[6]
A -element at the locus regulates the development of type 3 innate lymphoid cells.

Front Immunol. 2023

[7]
Transcription factor RORα enforces stability of the Th17 cell effector program by binding to a Rorc cis-regulatory element.

Immunity. 2022-11-8

[8]
Genetic architecture of asthma in African American patients.

J Allergy Clin Immunol. 2023-4

[9]
ILC3s select microbiota-specific regulatory T cells to establish tolerance in the gut.

Nature. 2022-10

[10]
A RORγt cell instructs gut microbiota-specific T cell differentiation.

Nature. 2022-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索