Sheth Maulee, Sharma Manju, Lehn Maria, Reza HasanAl, Takebe Takanori, Takiar Vinita, Wise-Draper Trisha, Esfandiari Leyla
Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA.
Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45219, USA.
APL Bioeng. 2024 Jul 31;8(3):036106. doi: 10.1063/5.0210134. eCollection 2024 Sep.
Extracellular biophysical cues such as matrix stiffness are key stimuli tuning cell fate and affecting tumor progression . However, it remains unclear how cancer spheroids in a 3D microenvironment perceive matrix mechanical stiffness stimuli and translate them into intracellular signals driving progression. Mechanosensitive Piezo1 and TRPV4 ion channels, upregulated in many malignancies, are major transducers of such physical stimuli into biochemical responses. Most mechanotransduction studies probing the reception of changing stiffness cues by cells are, however, still limited to 2D culture systems or cell-extracellular matrix models, which lack the major cell-cell interactions prevalent in 3D cancer tumors. Here, we engineered a 3D spheroid culture environment with varying mechanobiological properties to study the effect of static matrix stiffness stimuli on mechanosensitive and malignant phenotypes in oral squamous cell carcinoma spheroids. We find that spheroid growth is enhanced when cultured in stiff extracellular matrix. We show that the protein expression of mechanoreceptor Piezo1 and stemness marker CD44 is upregulated in stiff matrix. We also report the upregulation of a selection of genes with associations to mechanoreception, ion channel transport, extracellular matrix organization, and tumorigenic phenotypes in stiff matrix spheroids. Together, our results indicate that cancer cells in 3D spheroids utilize mechanosensitive ion channels Piezo1 and TRPV4 as means to sense changes in static extracellular matrix stiffness, and that stiffness drives pro-tumorigenic phenotypes in oral squamous cell carcinoma.
细胞外生物物理线索,如基质硬度,是调节细胞命运和影响肿瘤进展的关键刺激因素。然而,目前尚不清楚三维微环境中的癌症球体如何感知基质机械硬度刺激,并将其转化为驱动进展的细胞内信号。机械敏感的Piezo1和TRPV4离子通道在许多恶性肿瘤中上调,是将此类物理刺激转化为生化反应的主要转导器。然而,大多数探究细胞对变化的硬度线索接受情况的机械转导研究仍局限于二维培养系统或细胞-细胞外基质模型,这些模型缺乏三维癌症肿瘤中普遍存在的主要细胞-细胞相互作用。在这里,我们构建了具有不同机械生物学特性的三维球体培养环境,以研究静态基质硬度刺激对口腔鳞状细胞癌球体中机械敏感和恶性表型的影响。我们发现,在坚硬的细胞外基质中培养时,球体生长会增强。我们表明,机械感受器Piezo1和干性标志物CD44的蛋白表达在坚硬基质中上调。我们还报告了在坚硬基质球体中,一系列与机械感受、离子通道运输、细胞外基质组织和致瘤表型相关的基因上调。总之,我们的结果表明,三维球体中的癌细胞利用机械敏感离子通道Piezo1和TRPV4作为感知静态细胞外基质硬度变化的手段,并且硬度驱动口腔鳞状细胞癌中的促肿瘤表型。
Cochrane Database Syst Rev. 2016-7-25
New J Phys. 2025-7-1
Psychopharmacol Bull. 2024-7-8
Cochrane Database Syst Rev. 2018-7-12
Front Immunol. 2025-7-31
APL Bioeng. 2025-6-26
Acta Biomater. 2024-4-15
Biomimetics (Basel). 2023-9-11
Eur J Cancer. 2023-9
Med Sci (Basel). 2023-6-13