Helou de Oliveira Pedro H, Boaler Patrick J, Hua Guoxiong, West Nathan M, Hembre Robert T, Penney Jonathan M, Al-Afyouni Malik H, Woollins J Derek, García-Domínguez Andrés, Lloyd-Jones Guy C
School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
School of Chemistry, University of St Andrews North Haugh, St Andrews KY16 9ST UK.
Chem Sci. 2024 Jun 19;15(30):11875-11883. doi: 10.1039/d4sc02737j. eCollection 2024 Jul 31.
The kinetics of sulfur transfer from titanocene (poly)sulfides (CpTiS, CpTiSCMe, CpTi(SAr), CpTiCl(SAr)) to sulfenyl chlorides (SCl, RSCl) have been investigated by a combination of stopped-flow UV-Vis/NMR reaction monitoring, titration assays, numerical kinetic modelling and KS-DFT calculations. The reactions are rapid, proceeding to completion over timescales of milliseconds to minutes, a sequence of two S-S bond-forming steps ( , ). The archetypical polysulfides CpTiS (1a) and CpTiSC(Me) (2a) react with disulfur dichloride (SCl) through rate-limiting intermolecular S-S bond formation ( ) followed by a rapid intramolecular cyclization ( , with ≫ [RSCl]). The monofunctional sulfenyl chlorides (RSCl) studied herein react in two intermolecular S-S bond forming steps proceeding at similar rates ( ≈ ). Reactions of titanocene bisthiophenolates, CpTi(SAr) (5), with both mono- and di-functional sulfenyl chlorides result in rapid accumulation of the monothiophenolate, CpTiCl(SAr) (6) ( > ). Across the range of reactants studied, the rates are relatively insensitive to changes in temperature and in the electronics of the sulfenyl chloride, moderately sensitive to the electronics of the titanocene (poly)sulfide ( ≈ -2.0), and highly sensitive to the solvent polarity, with non-polar solvents (CS, CCl) leading to the slowest rates. The combined sensitivities are the result of a concerted, polarized and late transition state for the rate-limiting S-S bond forming step, accompanied by a large entropic penalty. Each substitution step {[Ti]-SR' + Cl-SR → [Ti]-Cl + RS-SR'} proceeds titanium-assisted Cl-S cleavage to generate a transient pentacoordinate complex, Cl-[CpTiX]-S(R')-SR, which then undergoes rapid Ti-S dissociation.
通过停流紫外可见/核磁共振反应监测、滴定分析、数值动力学建模和KS-DFT计算相结合的方法,研究了二茂钛(多)硫化物(CpTiS、CpTiSCMe、CpTi(SAr)、CpTiCl(SAr))与亚磺酰氯(SCl、RSCl)之间硫转移的动力学。反应迅速,在毫秒到分钟的时间尺度内完成,包括两个S-S键形成步骤( , )。典型的多硫化物CpTiS(1a)和CpTiSC(Me)(2a)与二氯化二硫(SCl)反应,通过限速的分子间S-S键形成( ),随后是快速的分子内环化( ,其中 ≫ [RSCl])。本文研究的单官能亚磺酰氯(RSCl)通过两个速率相似的分子间S-S键形成步骤进行反应( ≈ )。二茂钛双硫酚盐CpTi(SAr)(5)与单官能和双官能亚磺酰氯的反应都会导致单硫酚盐CpTiCl(SAr)(6)的快速积累( > )。在所研究的反应物范围内,反应速率对温度和亚磺酰氯电子性质的变化相对不敏感,对二茂钛(多)硫化物的电子性质适度敏感( ≈ -2.0),对溶剂极性高度敏感,非极性溶剂(CS、CCl)导致反应速率最慢。综合敏感性是限速S-S键形成步骤协同、极化和后期过渡态的结果,同时伴随着较大的熵罚。每个取代步骤{[Ti]-SR' + Cl-SR → [Ti]-Cl + RS-SR'}通过钛辅助的Cl-S裂解生成瞬态五配位络合物Cl-[CpTiX]-S(R')-SR,然后该络合物迅速发生Ti-S解离。