Kato Daichi, Suzuki Hajime, Abe Ryu, Kageyama Hiroshi
Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
Chem Sci. 2024 Jun 26;15(30):11719-11736. doi: 10.1039/d4sc02093f. eCollection 2024 Jul 31.
The band structure offers fundamental information on electronic properties of solid state materials, and hence it is crucial for solid state chemists to understand and predict the relationship between the band structure and electronic structure to design chemical and physical properties. Here, we review layered oxyhalide photocatalysts for water splitting with a particular emphasis on band structure control. The unique feature of these materials including Sillén and Sillén-Aurivillius oxyhalides lies in their band structure including a remarkably high oxygen band, allowing them to exhibit both visible light responsiveness and photocatalytic stability unlike conventional mixed anion compounds, which show good light absorption, but frequently encounter stability issues. For band structure control, simple strategies effective in mixed-anion compounds, such as anion substitution forming high energy p orbitals in accordance with its electronegativity, is not effective for oxyhalides with high oxygen bands. We overview key concepts for band structure control of oxyhalide photocatalysts such as lone-pair interactions and electrostatic interactions. The control of the band structure of inorganic solid materials is a crucial challenge across a wide range of materials chemistry fields, and the insights obtained by the development of oxyhalide photocatalysts are expected to provide knowledge for diverse materials chemistry.
能带结构提供了关于固态材料电子性质的基本信息,因此对于固态化学家来说,理解和预测能带结构与电子结构之间的关系以设计化学和物理性质至关重要。在此,我们综述用于水分解的层状卤氧化物光催化剂,特别强调能带结构控制。这些材料(包括西伦和西伦 - 奥里维利乌斯卤氧化物)的独特之处在于其能带结构,包括一个非常高的氧能带,这使得它们与传统的混合阴离子化合物不同,既能表现出可见光响应性又具有光催化稳定性,传统混合阴离子化合物虽有良好的光吸收,但经常遇到稳定性问题。对于能带结构控制,在混合阴离子化合物中有效的简单策略,如根据电负性形成高能p轨道的阴离子取代,对具有高氧能带的卤氧化物无效。我们概述了卤氧化物光催化剂能带结构控制的关键概念,如孤对相互作用和静电相互作用。无机固体材料能带结构的控制是广泛的材料化学领域中的一个关键挑战,通过卤氧化物光催化剂的发展所获得的见解有望为各种材料化学提供知识。