Suppr超能文献

基于深度学习的人体智能皮肤去除光声计算机断层成像。

Intelligent skin-removal photoacoustic computed tomography for human based on deep learning.

机构信息

School of Computer, Qufu Normal University, Rizhao, China.

School of Optics and Photonics, Beijing Institute of Technology, Beijing, China.

出版信息

J Biophotonics. 2024 Oct;17(10):e202400197. doi: 10.1002/jbio.202400197. Epub 2024 Aug 2.

Abstract

Photoacoustic computed tomography (PACT) has centimeter-level imaging ability and can be used to detect the human body. However, strong photoacoustic signals from skin cover deep tissue information, hindering the frontal display and analysis of photoacoustic images of deep regions of interest. Therefore, we propose a 2.5 D deep learning model based on feature pyramid structure and single-type skin annotation to extract the skin region, and design a mask generation algorithm to remove skin automatically. PACT imaging experiments on the human periphery blood vessel verified the correctness our proposed skin-removal method. Compared with previous studies, our method exhibits high robustness to the uneven illumination, irregular skin boundary, and reconstruction artifacts in the images, and the reconstruction errors of PACT images decreased by 20% ~ 90% with a 1.65 dB improvement in the signal-to-noise ratio at the same time. This study may provide a promising way for high-definition PACT imaging of deep tissues.

摘要

光声计算机断层扫描(PACT)具有厘米级的成像能力,可用于人体检测。然而,来自皮肤的强光声信号掩盖了深层组织信息,阻碍了对深部感兴趣区域的光声图像的正面显示和分析。因此,我们提出了一种基于特征金字塔结构和单类型皮肤标注的 2.5D 深度学习模型,用于提取皮肤区域,并设计了一种掩模生成算法,以自动去除皮肤。在人体外周血管的 PACT 成像实验验证了我们提出的皮肤去除方法的正确性。与以前的研究相比,我们的方法对图像中的不均匀光照、不规则的皮肤边界和重建伪影具有很高的鲁棒性,同时重建误差降低了 20%~90%,信噪比提高了 1.65dB。这项研究可能为深层组织的高清 PACT 成像提供了一种有前景的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验