Suppr超能文献

评估用于预测 PCI 术后急性 ST 段抬高型心肌梗死合并急性心力衰竭患者住院死亡风险的列线图模型。

Evaluation of a nomogram model for predicting in-hospital mortality risk in patients with acute ST-elevation myocardial infarction and acute heart failure post-PCI.

机构信息

Department of Cardiology, Anqing First People's Hospital of Anhui Medical University, Anqing, China.

Department of Cardiology, Peking University Shenzhen Hospital, Shenzhen, China.

出版信息

Scand Cardiovasc J. 2024 Dec;58(1):2387001. doi: 10.1080/14017431.2024.2387001. Epub 2024 Aug 2.

Abstract

OBJECTIVES

This study aims to identify the risk factors contributing to in-hospital mortality in patients with acute ST-elevation myocardial infarction (STEMI) who develop acute heart failure (AHF) post-percutaneous coronary intervention (PCI). Based on these factors, we constructed a nomogram to effectively identify high-risk patients.

METHODS

In the study, a collective of 280 individuals experiencing an acute STEMI who then developed AHF following PCI were evaluated. These subjects were split into groups for training and validation purposes. Utilizing lasso regression in conjunction with logistic regression analysis, researchers sought to pinpoint factors predictive of mortality and to create a corresponding nomogram for forecasting purposes. To evaluate the model's accuracy and usefulness in clinical settings, metrics such as the concordance index (C-index), calibration curves, and decision curve analysis (DCA) were employed.

RESULTS

Key risk factors identified included blood lactate, D-dimer levels, gender, left ventricular ejection fraction (LVEF), and Killip class IV. The nomogram demonstrated high accuracy (C-index: training set 0.838, validation set 0.853) and good fit (Hosmer-Lemeshow test: χ = 0.545,  = 0.762), confirming its clinical utility.

CONCLUSION

The developed clinical prediction model is effective in accurately forecasting mortality among patients with acute STEMI who develop AHF after PCI.

摘要

目的

本研究旨在确定经皮冠状动脉介入治疗(PCI)后发生急性心力衰竭(AHF)的急性 ST 段抬高型心肌梗死(STEMI)患者院内死亡的危险因素。基于这些因素,我们构建了一个列线图来有效识别高危患者。

方法

本研究评估了 280 例急性 STEMI 患者,这些患者在 PCI 后发生 AHF。这些患者分为训练组和验证组。研究人员使用套索回归结合逻辑回归分析,确定了预测死亡率的因素,并创建了相应的预测列线图。为了评估模型在临床环境中的准确性和实用性,使用了一致性指数(C 指数)、校准曲线和决策曲线分析(DCA)等指标。

结果

确定的关键危险因素包括血乳酸、D-二聚体水平、性别、左心室射血分数(LVEF)和 Killip 分级 IV 级。该列线图具有较高的准确性(训练集 C 指数:0.838,验证集 C 指数:0.853)和良好的拟合度(Hosmer-Lemeshow 检验:χ²=0.545,P=0.762),证实了其在临床中的实用性。

结论

该临床预测模型可有效准确预测 PCI 后发生 AHF 的急性 STEMI 患者的死亡率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验