Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
J Integr Plant Biol. 2024 Oct;66(10):2191-2207. doi: 10.1111/jipb.13743. Epub 2024 Aug 2.
Gene innovation plays an essential role in trait evolution. Rhizobial symbioses, the most important N-fixing agent in agricultural systems that exists mainly in Leguminosae, is one of the most attractive evolution events. However, the gene innovations underlying Leguminosae root nodule symbiosis (RNS) remain largely unknown. Here, we investigated the gene gain event in Leguminosae RNS evolution through comprehensive phylogenomic analyses. We revealed that Leguminosae-gain genes were acquired by gene duplication and underwent a strong purifying selection. Kyoto Encyclopedia of Genes and Genomes analyses showed that the innovated genes were enriched in flavonoid biosynthesis pathways, particular downstream of chalcone synthase (CHS). Among them, Leguminosae-gain type Ⅱ chalcone isomerase (CHI) could be further divided into CHI1A and CHI1B clades, which resulted from the products of tandem duplication. Furthermore, the duplicated CHI genes exhibited exon-intron structural divergences evolved through exon/intron gain/loss and insertion/deletion. Knocking down CHI1B significantly reduced nodulation in Glycine max (soybean) and Medicago truncatula; whereas, knocking down its duplication gene CHI1A had no effect on nodulation. Therefore, Leguminosae-gain type Ⅱ CHI participated in RNS and the duplicated CHI1A and CHI1B genes exhibited RNS functional divergence. This study provides functional insights into Leguminosae-gain genetic innovation and sub-functionalization after gene duplication that contribute to the evolution and adaptation of RNS in Leguminosae.
基因创新在性状进化中起着至关重要的作用。根瘤菌共生是农业系统中最重要的固氮剂,主要存在于豆科植物中,是最吸引人的进化事件之一。然而,豆科植物根瘤共生(RNS)的基因创新仍然知之甚少。在这里,我们通过综合系统基因组学分析研究了豆科植物 RNS 进化中的基因获得事件。我们揭示了豆科植物获得的基因是通过基因复制获得的,并经历了强烈的纯化选择。京都基因与基因组百科全书分析表明,创新基因富集在类黄酮生物合成途径中,特别是在查尔酮合酶(CHS)下游。其中,豆科植物获得的Ⅱ型查尔酮异构酶(CHI)可进一步分为 CHI1A 和 CHI1B 分支,这是串联复制的产物。此外,复制的 CHI 基因表现出通过外显子/内含子获得/丢失和插入/缺失进化的外显子-内含子结构差异。CHI1B 的敲低显著降低了大豆和蒺藜苜蓿的结瘤;而其复制基因 CHI1A 的敲低对结瘤没有影响。因此,豆科植物获得的Ⅱ型 CHI 参与了 RNS,并且复制的 CHI1A 和 CHI1B 基因表现出 RNS 功能分化。这项研究为豆科植物获得的遗传创新和基因复制后的亚功能化提供了功能见解,有助于 RNS 在豆科植物中的进化和适应。