Dong Haojie, Liu Haoliang, Guo Yu-Jie, Feng Yi-Hu, Zhu Xu, Xu Shao-Wen, Sui Fengxiang, Yu Lianzheng, Liu Mengting, Guo Jin-Zhi, Yin Ya-Xia, Xiao Bing, Wu Xing-Long, Guo Yu-Guo, Wang Peng-Fei
Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China.
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, PR China.
J Am Chem Soc. 2024 Aug 14;146(32):22335-22347. doi: 10.1021/jacs.4c04814. Epub 2024 Aug 2.
Searching for high energy-density electrode materials for sodium ion batteries has revealed Na-deficient intercalation compounds with lattice oxygen redox as promising high-capacity cathodes. However, anionic redox reactions commonly encountered poor electrochemical reversibility and unfavorable structural transformations during dynamic (de)sodiation processes. To address this issue, we employed lithium orbital hybridization chemistry to create Na-O-Li configuration in a prototype P2-layered NaLiMgCuMnO (P2-NaLMCM') cathode material. That Li ions, having low electronegativity, reside in the transition metal slabs serves to stimulate unhybridized O 2p orbitals to facilitate the stable capacity contribution of oxygen redox at high state of charge. The prismatic-type structure evolving to an intergrowth structure of the Z phase at high charging state could be simultaneously alleviated by reducing the electrostatic repulsion of O-O layers. As a consequence, P2-NaLMCM' delivers a high specific capacity of 183.8 mAh g at 0.05 C and good cycling stability with a capacity retention of 80.2% over 200 cycles within the voltage range of 2.0-4.5 V. Our findings provide new insights into both tailoring oxygen redox chemistry and stabilizing dynamic structural evolution for high-energy battery cathode materials.
寻找用于钠离子电池的高能量密度电极材料,已发现具有晶格氧氧化还原的缺钠插层化合物有望成为高容量阴极。然而,阴离子氧化还原反应在动态(脱)钠过程中通常遇到较差的电化学可逆性和不利的结构转变。为了解决这个问题,我们采用锂轨道杂化化学在原型P2层状NaLiMgCuMnO(P2-NaLMCM')阴极材料中创建Na-O-Li构型。电负性低的锂离子位于过渡金属板中,有助于激发未杂化的O 2p轨道,以促进在高充电状态下氧氧化还原的稳定容量贡献。通过减少O-O层的静电排斥,可以同时缓解在高充电状态下棱柱型结构演变为Z相共生结构的问题。因此,P2-NaLMCM'在0.05 C下具有183.8 mAh g的高比容量和良好的循环稳定性,在2.0-4.5 V的电压范围内200次循环后容量保持率为80.2%。我们的研究结果为定制氧氧化还原化学和稳定高能量电池阴极材料的动态结构演变提供了新的见解。