Wittmann Lukas, Gordiy Igor, Friede Marvin, Helmich-Paris Benjamin, Grimme Stefan, Hansen Andreas, Bursch Markus
Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
Phys Chem Chem Phys. 2024 Aug 14;26(32):21379-21394. doi: 10.1039/d4cp01514b.
Efficient dispersion corrections are an indispensable component of modern density functional theory, semi-empirical quantum mechanical, and even force field methods. In this work, we extend the well established D3 and D4 London dispersion corrections to the full actinides series, francium, and radium. To keep consistency with the existing versions, the original parameterization strategy of the D4 model was only slightly modified. This includes improved reference Hirshfeld atomic partial charges at the ωB97M-V/ma-def-TZVP level to fit the required electronegativity equilibration charge (EEQ) model. In this context, we developed a new actinide data set called AcQM, which covers the most common molecular actinide compound space. Furthermore, the efficient calculation of dynamic polarizabilities that are needed to construct AB6 dispersion coefficients was implemented into the ORCA program package. The extended models are assessed for the computation of dissociation curves of actinide atoms and ions, geometry optimizations of crystal structure cutouts, gas-phase structures of small uranium compounds, and an example extracted from a small actinide complex protein assembly. We found that the novel parameterizations perform on par with the computationally more demanding density-dependent VV10 dispersion correction. With the presented extension, the excellent cost-accuracy ratio of the D3 and D4 models can now be utilized in various fields of computational actinide chemistry and, , in efficient composite DFT methods such as SCAN-3c. They are implemented in our freely available standalone codes (dftd4, s-dftd3) and the D4 version will be also available in the upcoming ORCA 6.0 program package.
高效色散校正方法是现代密度泛函理论、半经验量子力学方法甚至力场方法中不可或缺的组成部分。在本工作中,我们将已成熟的D3和D4伦敦色散校正方法扩展到整个锕系元素系列、钫和镭。为了与现有版本保持一致,对D4模型的原始参数化策略仅进行了轻微修改。这包括在ωB97M-V/ma-def-TZVP水平上改进参考的 Hirshfeld 原子部分电荷,以拟合所需的电负性均衡电荷(EEQ)模型。在此背景下,我们开发了一个名为AcQM的新锕系元素数据集,它涵盖了最常见的分子锕系元素化合物空间。此外,还将构建AB6色散系数所需的动态极化率的高效计算方法集成到了ORCA程序包中。对扩展后的模型进行了评估,用于计算锕系元素原子和离子的解离曲线、晶体结构片段的几何优化、小铀化合物的气相结构以及从小型锕系元素复合蛋白质组装体中提取的一个示例。我们发现,新的参数化方法与计算量更大的密度依赖型VV10色散校正方法表现相当。通过本文提出的扩展,D3和D4模型出色的性价比现在可应用于计算锕系元素化学的各个领域,以及高效的复合密度泛函理论方法(如SCAN-3c)中。它们已在我们免费提供的独立代码(dftd4、s-dftd3)中实现,D4版本也将在即将推出的ORCA 6.0程序包中提供。