Oudot B, Doblhoff-Dier K
Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands.
J Chem Phys. 2024 Aug 7;161(5). doi: 10.1063/5.0220465.
Reaction barriers for molecules dissociating on metal surfaces (as relevant to heterogeneous catalysis) are often difficult to predict accurately with density functional theory (DFT). Although the results obtained for several dissociative chemisorption reactions via DFT in the generalized gradient approximation (GGA), in meta-GGA, and for GGA exchange + van der Waals correlation scatter around the true reaction barrier, there is an entire class of dissociative chemisorption reactions for which GGA-type functionals collectively underestimate the reaction barrier. Little is known why GGA-DFT collectively fails in some cases and not in others, and we do not know whether other methods suffer from the same inconsistency. Here, we present barrier heights for dissociative chemisorption reactions obtained from the random phase approximation in the adiabatic-connection fluctuation-dissipation theorem (ACFDT-RPA) and from hybrid functionals with different amounts of exact exchange. By comparing the results obtained for the dissociative chemisorption reaction of H2 on Al(110) (where GGA-DFT collectively underestimates the barrier) and H2 on Cu(111) (where GGA-DFT scatters around the true barrier), we can gauge whether the inconsistent description of the systems persists for hybrid functionals and ACFDT-RPA. We find hybrid functionals to improve the relative description of the two systems, but to fall short of chemical accuracy. ACFDT-RPA improves the results further and leads to chemically accurate barriers for both systems. Together with an analysis of the density of states and the results from selected GGA, meta-GGA, and GGA exchange + van der Waals correlation functionals, these results allow us to discuss possible origins for the inconsistent behavior of GGA-based functionals for molecule-metal reaction barriers.
分子在金属表面解离的反应势垒(与多相催化相关)通常很难用密度泛函理论(DFT)准确预测。尽管通过广义梯度近似(GGA)、meta-GGA中的DFT以及GGA交换+范德华相关对几个解离化学吸附反应得到的结果围绕真实反应势垒分散,但存在一整类解离化学吸附反应,GGA型泛函总体上低估了反应势垒。对于GGA-DFT在某些情况下总体失效而在其他情况下却不会的原因知之甚少,而且我们也不知道其他方法是否也存在同样的不一致性。在这里,我们给出了通过绝热连接涨落耗散定理中的随机相位近似(ACFDT-RPA)以及具有不同精确交换量的杂化泛函得到的解离化学吸附反应的势垒高度。通过比较H₂在Al(110)上的解离化学吸附反应(GGA-DFT总体上低估了势垒)和H₂在Cu(111)上的解离化学吸附反应(GGA-DFT的结果围绕真实势垒分散)所得到的结果,我们可以判断对于杂化泛函和ACFDT-RPA,系统的不一致描述是否仍然存在。我们发现杂化泛函改善了两个系统的相对描述,但未达到化学精度。ACFDT-RPA进一步改善了结果,并为两个系统都给出了化学精度的势垒。结合态密度分析以及选定的GGA、meta-GGA和GGA交换+范德华相关泛函的结果,这些结果使我们能够讨论基于GGA的泛函在分子-金属反应势垒方面行为不一致的可能原因。