Suppr超能文献

基于血流冲击原理的心脏支架数值建模与分析。

Numerical modeling and analysis of cardiac stent using blood hammer principle.

机构信息

School of Arts Sciences, Humanities and Education, SASTRA Deemed University, Thanjavur, Tamil Nadu, India.

School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India.

出版信息

Technol Health Care. 2024;32(6):4223-4238. doi: 10.3233/THC-240051.

Abstract

BACKGROUND

Atherosclerosis is a condition which disrupts blood flow due to plaque build-up inside the arteries. Under conditions where consecutive plaques are prevailing blood hammer principle is exhibited.

OBJECTIVE

The pressure and shear stress produced at an infinitesimal area act as the governing equation for stent modeling. The leading order pressure lays the foundation for the design of cardiac stents with definite dimensions.

METHOD

The designed stent was encapsulated inside a crimper validated through ANSYS-static and transient structural simulation to derive the total deformation, equivalent strain, and stress exerted on the stent. Five different biomaterials stainless steel 316, cobalt, chromium, platinum, and Poly lactic acid were selected for the material assessment.

RESULT

Static and Transient structural analysis for a period of 1 and 10 secs was implemented for a stent with and without a crimper. The material performance in terms of total deformation, equivalent stress, and strain are analyzed.

CONCLUSION

The paper envisions the dynamics of blood hammer in atherosclerosis that provides the changes in the pressure and clotting process. It shows the promising results of the stent behavior in varied forces which gives valuable insights for future improvement in stent design and material selection.

摘要

背景

动脉粥样硬化是一种由于动脉内部斑块积聚而导致血流中断的疾病。在连续斑块占主导地位的情况下,会出现血液锤击原理。

目的

在微小面积上产生的压力和剪切应力是支架建模的控制方程。主导压力为具有确定尺寸的心脏支架设计奠定了基础。

方法

设计的支架被封装在一个验证通过 ANSYS 静态和瞬态结构模拟的压接器中,以得出支架上的总变形、等效应变和所施加的应力。选择了五种不同的生物材料不锈钢 316、钴、铬、铂和聚乳酸来进行材料评估。

结果

对带有和不带有压接器的支架进行了 1 秒和 10 秒的静态和瞬态结构分析。分析了材料在总变形、等效应力和应变方面的性能。

结论

本文预见了动脉粥样硬化中血液锤击的动力学,提供了压力和凝血过程的变化。它展示了支架在不同力下的良好行为,为未来改进支架设计和材料选择提供了有价值的见解。

相似文献

1
Numerical modeling and analysis of cardiac stent using blood hammer principle.
Technol Health Care. 2024;32(6):4223-4238. doi: 10.3233/THC-240051.
2
Biomaterial optimization in a percutaneous aortic valve stent using finite element analysis.
Cardiovasc Revasc Med. 2009 Oct-Dec;10(4):247-51. doi: 10.1016/j.carrev.2008.12.003.
3
Effects of stent design and atherosclerotic plaque composition on arterial wall biomechanics.
J Endovasc Ther. 2008 Dec;15(6):643-54. doi: 10.1583/08-2443.1.
4
A manufacturing and annealing protocol to develop a cold-sprayed Fe-316L stainless steel biodegradable stenting material.
Acta Biomater. 2019 Nov;99:479-494. doi: 10.1016/j.actbio.2019.08.034. Epub 2019 Aug 23.
5
The consequences of the mechanical environment of peripheral arteries for nitinol stenting.
Med Biol Eng Comput. 2011 Nov;49(11):1279-88. doi: 10.1007/s11517-011-0815-2. Epub 2011 Aug 11.
7
Cobalt Chromium or Stainless Steel Balloon-Expandable Bare Metal Stents for Iliac Occlusive Disease?
J Endovasc Ther. 2024 Dec 23:15266028241306068. doi: 10.1177/15266028241306068.
8
Multi-scale mechanical investigation of stainless steel and cobalt-chromium stents.
J Mech Behav Biomed Mater. 2014 Dec;40:240-251. doi: 10.1016/j.jmbbm.2014.09.010. Epub 2014 Sep 16.
9
A Computational Study of Mechanical Performance of Bioresorbable Polymeric Stents with Design Variations.
Cardiovasc Eng Technol. 2019 Mar;10(1):46-60. doi: 10.1007/s13239-018-00397-9. Epub 2018 Dec 10.
10
Comparing coronary stent material performance on a common geometric platform through simulated bench testing.
J Mech Behav Biomed Mater. 2012 Aug;12:129-38. doi: 10.1016/j.jmbbm.2012.02.013. Epub 2012 Mar 3.

本文引用的文献

2
Patient-specific computational simulation of coronary artery bifurcation stenting.
Sci Rep. 2021 Aug 13;11(1):16486. doi: 10.1038/s41598-021-95026-2.
4
Structural Design of Vascular Stents: A Review.
Micromachines (Basel). 2021 Jun 29;12(7):770. doi: 10.3390/mi12070770.
5
3D printing materials and their use in medical education: a review of current technology and trends for the future.
BMJ Simul Technol Enhanc Learn. 2018 Jan;4(1):27-40. doi: 10.1136/bmjstel-2017-000234. Epub 2017 Oct 21.
6
Biocompatibility of Coronary Stents.
Materials (Basel). 2014 Jan 28;7(2):769-786. doi: 10.3390/ma7020769.
8
Therapeutic approaches to drug targets in atherosclerosis.
Saudi Pharm J. 2014 Jul;22(3):179-90. doi: 10.1016/j.jsps.2013.04.005. Epub 2013 Nov 5.
9
Biomaterial applications in cardiovascular tissue repair and regeneration.
Expert Rev Cardiovasc Ther. 2012 Aug;10(8):1039-49. doi: 10.1586/erc.12.99.
10
Computational structural modelling of coronary stent deployment: a review.
Comput Methods Biomech Biomed Engin. 2011 Apr;14(4):331-48. doi: 10.1080/10255841003766845.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验