Suppr超能文献

利用生物信息学和系统生物学方法研究 COVID-19 与胰腺癌的关系。

Investigation of the relationship between COVID-19 and pancreatic cancer using bioinformatics and systems biology approaches.

机构信息

Department of Oncology, Minda Hospital of Hubei Minzu University, Enshi, P.R. China.

Department of Radiology, Maternal and Child Health Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, P.R. China.

出版信息

Medicine (Baltimore). 2024 Aug 2;103(31):e39057. doi: 10.1097/MD.0000000000039057.

Abstract

BACKGROUND

The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, poses a huge threat to human health. Pancreatic cancer (PC) is a malignant tumor with high mortality. Research suggests that infection with SARS-CoV-2 may increase disease severity and risk of death in patients with pancreatic cancer, while pancreatic cancer may also increase the likelihood of contracting SARS-CoV-2, but the link is unclear.

METHODS

This study investigated the transcriptional profiles of COVID-19 and PC patients, along with their respective healthy controls, using bioinformatics and systems biology approaches to uncover the molecular mechanisms linking the 2 diseases. Specifically, gene expression data for COVID-19 and PC patients were obtained from the Gene Expression Omnibus datasets, and common differentially expressed genes (DEGs) were identified. Gene ontology and pathway enrichment analyses were performed on the common DEGs to elucidate the regulatory relationships between the diseases. Additionally, hub genes were identified by constructing a protein-protein interaction network from the shared DEGs. Using these hub genes, we conducted regulatory network analyses of microRNA/transcription factors-genes relationships, and predicted potential drugs for treating COVID-19 and PC.

RESULTS

A total of 1722 and 2979 DEGs were identified from the transcriptome data of PC (GSE119794) and COVID-19 (GSE196822), respectively. Among these, 236 common DEGs were found between COVID-19 and PC based on protein-protein interaction analysis. Functional enrichment analysis indicated that these shared DEGs were involved in pathways related to viral genome replication and tumorigenesis. Additionally, 10 hub genes, including extra spindle pole bodies like 1, holliday junction recognition protein, marker of proliferation Ki-67, kinesin family member 4A, cyclin-dependent kinase 1, topoisomerase II alpha, cyclin B2, ubiquitin-conjugating enzyme E2 C, aurora kinase B, and targeting protein for Xklp2, were identified. Regulatory network analysis revealed 42 transcription factors and 23 microRNAs as transcriptional regulatory signals. Importantly, lucanthone, etoposide, troglitazone, resveratrol, calcitriol, ciclopirox, dasatinib, enterolactone, methotrexate, and irinotecan emerged as potential therapeutic agents against both COVID-19 and PC.

CONCLUSION

This study unveils potential shared pathogenic mechanisms between PC and COVID-19, offering novel insights for future research and therapeutic strategies for the treatment of PC and SARS-CoV-2 infection.

摘要

背景

由严重急性呼吸系统综合征冠状病毒 2 型(SARS-CoV-2)病毒引起的 2019 年冠状病毒病(COVID-19)大流行对人类健康构成了巨大威胁。胰腺癌(PC)是一种死亡率高的恶性肿瘤。研究表明,SARS-CoV-2 感染可能会增加胰腺癌患者的疾病严重程度和死亡风险,而胰腺癌也可能增加感染 SARS-CoV-2 的可能性,但两者之间的联系尚不清楚。

方法

本研究使用生物信息学和系统生物学方法,研究了 COVID-19 和 PC 患者以及各自的健康对照者的转录谱,以揭示这两种疾病之间的分子机制。具体来说,从基因表达综合数据库(GEO)数据集获得了 COVID-19 和 PC 患者的基因表达数据,并鉴定了共同差异表达基因(DEGs)。对共同 DEGs 进行基因本体论和通路富集分析,以阐明疾病之间的调控关系。此外,从共享 DEGs 构建蛋白质-蛋白质相互作用网络来识别枢纽基因。利用这些枢纽基因,我们对 microRNA/转录因子-基因关系进行了调控网络分析,并预测了治疗 COVID-19 和 PC 的潜在药物。

结果

从 PC(GSE119794)和 COVID-19(GSE196822)的转录组数据中分别鉴定出 1722 个和 2979 个 DEGs。基于蛋白质-蛋白质相互作用分析,在这两种疾病中发现了 236 个共同的 DEGs。功能富集分析表明,这些共享 DEGs 参与了与病毒基因组复制和肿瘤发生相关的途径。此外,鉴定出 10 个枢纽基因,包括纺锤体极体外体样 1、霍利迪连接识别蛋白、增殖标志物 Ki-67、驱动蛋白家族成员 4A、细胞周期蛋白依赖性激酶 1、拓扑异构酶 IIα、细胞周期蛋白 B2、泛素连接酶 E2 C、极光激酶 B 和靶向蛋白 Xklp2。调控网络分析揭示了 42 个转录因子和 23 个 microRNAs 作为转录调控信号。重要的是,卢卡酮、依托泊苷、曲格列酮、白藜芦醇、钙三醇、环吡咯酮、达沙替尼、肠内酯、甲氨蝶呤和伊立替康被确定为治疗 COVID-19 和 PC 的潜在药物。

结论

本研究揭示了 PC 和 COVID-19 之间潜在的共同发病机制,为未来研究和治疗 PC 和 SARS-CoV-2 感染的治疗策略提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5163/11296473/294e2455f637/medi-103-e39057-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验