Suppr超能文献

用于癌症细胞中时空受限增强型双模式生物传感 MicroRNA 的先进 3D DNA 纳米平台。

An advanced 3D DNA nanoplatform for spatiotemporally confined enhanced dual-mode biosensing MicroRNA in cancer cell.

机构信息

Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.

Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.

出版信息

Biosens Bioelectron. 2024 Nov 1;263:116619. doi: 10.1016/j.bios.2024.116619. Epub 2024 Jul 31.

Abstract

Dual-mode signal output platforms have demonstrated considerable promise due to their improved anti-interference capability and inherent signal self-correction. Nevertheless, traditional discrete-distributed signal probes often encounter significant drawbacks, including limited mass transfer efficiency, diminished signal strength, and instability in intricate biochemical environments. In response to these challenges, a scalable and hyper-compacted 3D DNA nanoplatform resembling "periodic focusing heliostat" has been developed for synergistically enhanced fluorescence (FL) and surface-enhanced Raman spectroscopy (SERS) biosensing of miRNA in cancer cells. Our approach utilized a distinctive assembly strategy integrating gold nanostars (GNS) as fundamental "heliostat units" linked by palindromic DNA sequences to facilitate each other hand-in-hand cascade alignment and condensed into large scale nanostructures. This configuration was further augmented by the incorporation of gold nanoparticles (GNP) via strong Au-S bonds, resulting in a sturdy framework for improved signal transduction. The initiation of this assembly process was mediated by the hybridization of dsDNA to miRNA-21, which served as a primer for polymerization and nicking reactions, thus generating a multifunctional T2 probe. This probe is intricately designed with three distinct parts: a 3'-palindromic end for structural integrity, a central region for capturing SERS-active probes (Cy3-P2), and a 5'-segment for attaching fluorescence reporters. Upon integration T2 into the GNS-based heliostat unit, it promotes palindromic arm-induced aggregation and plasma exciton coupling between plasma nanoparticles and signal transduction tags. This clustered arrangement creates a high-density "hot spot" array that maximizes the local electromagnetic fields necessary for enhanced SERS and FL response. This superstructure supports enhanced aggregation-induced signal amplification for both SERS and FL, offering exceptional sensitivity with LOD as low as 0.0306 pM and 0.409 pM. The efficacy of this method was demonstrated in the evaluation of miRNA-21 in various cancer cell lines.

摘要

双模信号输出平台因其抗干扰能力的提高和固有信号的自我修正而显示出相当大的潜力。然而,传统的离散分布信号探针往往存在显著的缺点,包括有限的传质效率、信号强度降低以及在复杂的生化环境中的不稳定性。针对这些挑战,我们开发了一种可扩展的超紧凑 3D DNA 纳米平台,类似于“周期性聚焦定日镜”,用于协同增强癌症细胞中 miRNA 的荧光(FL)和表面增强拉曼光谱(SERS)生物传感。我们的方法利用一种独特的组装策略,将金纳米星(GNS)作为基本的“定日镜单元”,通过回文 DNA 序列连接,相互协助级联对齐并凝聚成大规模纳米结构。通过强 Au-S 键将金纳米粒子(GNP)掺入其中,进一步增强了这种结构,为改善信号转导提供了坚固的框架。该组装过程的启动是由 dsDNA 与 miRNA-21 的杂交介导的,miRNA-21 作为聚合和缺口反应的引物,从而产生多功能 T2 探针。该探针具有三个不同的部分,精心设计:3'端的回文末端用于结构完整性,中央区域用于捕获 SERS 活性探针(Cy3-P2),5'端用于连接荧光报告器。当 T2 整合到基于 GNS 的定日镜单元中时,它会促进回文臂诱导的聚集和等离子体纳米粒子与信号转导标签之间的等离子体激元耦合。这种聚集排列创建了一个高密度的“热点”阵列,最大限度地提高了增强 SERS 和 FL 响应所需的局部电磁场。这种超结构支持 SERS 和 FL 的增强聚集诱导信号放大,具有极低的 LOD,分别为 0.0306 pM 和 0.409 pM。该方法在各种癌细胞系中评估 miRNA-21 的效果得到了验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验