Suppr超能文献

基于血栓内和血栓周区域的影像组学预测 EVT 后颅内出血风险:一项多中心 CT 研究。

Radiomics of intrathrombus and perithrombus regions for Post-EVT intracranial hemorrhage risk Prediction: A multicenter CT study.

机构信息

Department of Radiology, Affiliated Hospital of Nantong University, Nantong, China.

Department of Radiology, Kunshan Second People's Hospital, Kunshan, China.

出版信息

Eur J Radiol. 2024 Sep;178:111653. doi: 10.1016/j.ejrad.2024.111653. Epub 2024 Jul 27.

Abstract

OBJECTIVES

This study aimed to assess the predictive performance of radiomics derived from computed tomography (CT) images of thrombus regions in predicting the risk of intracranial hemorrhage (ICH) following endovascular thrombectomy (EVT).

MATERIALS AND METHODS

This retrospective multicenter study included 336 patients who underwent admission CT and EVT for acute anterior-circulation large vessel occlusion between December 2018 and December 2023. Follow-up imaging was performed 24 h post-procedure to evaluate the occurrence of ICH. 230 patients from centers A and B were randomly allocated into training and test groups in a 7:3 ratio, while the remaining 106 patients from center C comprised the validation cohort. Radiologists manually segmenting the thrombus on CT images, and the perithrombus region was defined by expanding the initial region of interest (ROI). A total of 428 radiomics features were extracted from both intrathrombus and perithrombus regions on CT images. The Mann-Whitney U test was used for feature selection, and least absolute shrinkage and selection operator (LASSO) regression was employed for model development, followed by validation using a 5-fold cross-validation approach. Model performance was assessed using the area under the curve (AUC) of the receiver operating characteristic (ROC).

RESULTS

Among the eligible patients, 128 (38.1 %) experienced ICH after EVT. The combined model exhibited superior performance in the training cohort (AUC: 0.913, 95 % CI: 0.861-0.965), test cohort (AUC: 0.868, 95 % CI: 0.775-0.962), and validation cohort (AUC: 0.850, 95 % CI: 0.768-0.912). Notably, in the validation group, both the perithrombus and combined models demonstrated higher predictive accuracy compared to the intrathrombus model (0.837 vs. 0.684, p = 0.02; AUC: 0.850 vs. 0.684, p = 0.01).

CONCLUSIONS

Radiomics features derived from the perithrombus region significantly enhance the prediction of ICH after EVT, providing valuable insights for optimizing post-procedural clinical decisions.

CLINICAL RELEVANCE STATEMENT

This study highlights the importance of radiomics extracted from intrathrombus and perithrombus region in predicting intracranial hemorrhagefollowing endovascular thrombectomy, which can aid in improving patient outcomes.

摘要

目的

本研究旨在评估血栓区域 CT 图像的放射组学预测接受血管内血栓切除术(EVT)后颅内出血(ICH)风险的性能。

材料与方法

本回顾性多中心研究纳入了 2018 年 12 月至 2023 年 12 月期间接受急性前循环大血管闭塞 EVT 的 336 例患者。术后 24 小时进行随访影像学检查以评估 ICH 的发生情况。中心 A 和 B 的 230 例患者以 7:3 的比例随机分配到训练组和测试组,而中心 C 的其余 106 例患者构成验证队列。放射科医生手动在 CT 图像上对血栓进行分割,在初始感兴趣区(ROI)的基础上向外扩展定义血栓周围区。从 CT 图像的血栓内和血栓周围区共提取了 428 个放射组学特征。使用曼惠特尼 U 检验进行特征选择,使用最小绝对值收缩和选择算子(LASSO)回归进行模型开发,然后使用 5 折交叉验证方法进行验证。使用接收者操作特征(ROC)曲线下面积(AUC)评估模型性能。

结果

在符合条件的患者中,128 例(38.1%)在 EVT 后发生 ICH。联合模型在训练队列(AUC:0.913,95%CI:0.861-0.965)、测试队列(AUC:0.868,95%CI:0.775-0.962)和验证队列(AUC:0.850,95%CI:0.768-0.912)中表现出更好的性能。值得注意的是,在验证组中,血栓周围区模型和联合模型的预测准确性均高于血栓内模型(0.837 比 0.684,p=0.02;AUC:0.850 比 0.684,p=0.01)。

结论

来源于血栓周围区的放射组学特征显著提高了 EVT 后 ICH 的预测准确性,为优化术后临床决策提供了有价值的信息。

临床相关性声明

本研究强调了从血栓内和血栓周围区提取的放射组学在预测血管内血栓切除术后颅内出血中的重要性,有助于改善患者的预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验