Suppr超能文献

评估整个乳腺癌病程中能量需求预测方程:一项比较研究。

Evaluating predictive equations for energy requirements throughout breast cancer trajectory: A comparative study.

机构信息

Human Nutrition Research Unit, Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.

Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada.

出版信息

Clin Nutr. 2024 Sep;43(9):2073-2082. doi: 10.1016/j.clnu.2024.07.032. Epub 2024 Jul 26.

Abstract

BACKGROUND & AIMS: Accurately estimating resting energy requirements is crucial for optimizing energy intake, particularly in the context of patients with varying energy needs, such as individuals with cancer. We sought to evaluate the agreement between resting energy expenditure (REE) predicted by 40 equations and that measured by reference methods in women undergoing active breast cancer treatment stage (I-IV) and post-completion (i.e., survivors).

METHODS

Data from 4 studies were combined. REE values estimated from 40 predictive equations identified by a systematic search were compared with REE assessed by indirect calorimetry (IC) using a metabolic cart (MC-REE N = 46) or a whole-room indirect calorimeter (WRIC-REE N = 44). Agreement between methods was evaluated using Bland-Altman and Lin's concordance coefficient correlation (Lin's CCC).

RESULTS

Ninety participants (24 % survivors, 61.1% had early-stage breast cancer I or II, mean age: 56.8 ± 11 years; body mass index: 28.7 ± 6.4 kg/m) were included in this analysis. Mean MC-REE and WRIC-REE values were 1389 ± 199 kcal/day and 1506 ± 247 kcal/day, respectively. Limits of agreement were wide for all equations compared to both MC and WRIC (∼300 kcal for both methods), including the most commonly used ones, such as Harris-Benedict and Mifflin ST. Jeor equations; none had a bias within ±10% of measured REE, and all had low agreement per Lin's CCC analysis (<0.90). The Korth equation exhibited the best performance against WRIC and the Lvingston-Kohlstadt equation against MC. Similar patterns of bias were observed between survivors and patients and between patients with stages I-III versus IV cancer.

CONCLUSION

Most equations failed to accurately predict REE at the group level, and none were effective at the individual level. This inaccuracy has significant implications for women with or surviving breast cancer, who may experience weight gain, maintenance, or loss due to inaccurate energy needs estimations. Therefore, our research underscores the need for further efforts to improve REE estimation.

摘要

背景与目的

准确估算静息能量需求对于优化能量摄入至关重要,尤其是对于那些能量需求不同的患者,如癌症患者。我们旨在评估 40 种预测方程预测的静息能量消耗(REE)与参考方法测量的 REE 在接受主动乳腺癌治疗阶段(I-IV 期)和治疗完成后(即幸存者)的女性中的一致性。

方法

合并了 4 项研究的数据。通过系统搜索确定的 40 种预测方程估算的 REE 值与通过代谢箱(MC-REE,N=46)或全室间接测热法(WRIC-REE,N=44)评估的 REE 进行比较。使用 Bland-Altman 和 Lin 一致性系数相关系数(Lin's CCC)评估方法之间的一致性。

结果

本分析纳入了 90 名参与者(24%为幸存者,61.1%患有早期乳腺癌 I 期或 II 期,平均年龄:56.8±11 岁;体重指数:28.7±6.4kg/m)。MC-REE 和 WRIC-REE 的平均数值分别为 1389±199kcal/天和 1506±247kcal/天。与 MC 和 WRIC 相比,所有方程的一致性范围都很宽(两种方法均约为 300kcal),包括最常用的 Harris-Benedict 和 Mifflin ST 方程。Jeor 方程等均无 10%以内的测量 REE 偏差,并且所有的 Lin's CCC 分析(<0.90)均显示一致性低。Korth 方程与 WRIC 的表现最佳,而 Lvingston-Kohlstadt 方程与 MC 的表现最佳。幸存者与患者之间以及 I-III 期癌症患者与 IV 期癌症患者之间观察到类似的偏差模式。

结论

大多数方程未能准确预测群体水平的 REE,也没有一个方程在个体水平上有效。这一不准确对患有或幸存乳腺癌的女性具有重大影响,因为不准确的能量需求估算可能导致体重增加、维持或减轻。因此,我们的研究强调需要进一步努力提高 REE 估算。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验