National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.
National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
Curr Biol. 2024 Aug 19;34(16):3763-3777.e5. doi: 10.1016/j.cub.2024.07.022. Epub 2024 Aug 1.
Seedlessness is a crucial quality trait in table grape (Vitis vinifera L.) breeding. However, the development of seeds involved intricate regulations, and the polygenic basis of seed abortion remains unclear. Here, we combine comparative genomics, population genetics, quantitative genetics, and integrative genomics to unravel the evolution and polygenic basis of seedlessness in grapes. We generated the haplotype-resolved genomes for two seedless grape cultivars, "Thompson Seedless" (TS, syn. "Sultania") and "Black Monukka" (BM). Comparative genomics identified a ∼4.25 Mb hemizygous inversion on Chr10 specific in seedless cultivars, with seedless-associated genes VvTT16 and VvSUS2 located at breakpoints. Population genomic analyses of 548 grapevine accessions revealed two distinct clusters of seedless cultivars, and the identity-by-descent (IBD) results indicated that the origin of the seedlessness trait could be traced back to "Sultania." Introgression, rather than convergent selection, shaped the evolutionary history of seedlessness in grape improvement. Genome-wide association study (GWAS) analysis identified 110 quantitative trait loci (QTLs) associated with 634 candidate genes, including previously unidentified candidate genes, such as three 11S GLOBULIN SEED STORAGE PROTEIN and two CYTOCHROME P450 genes, and well-known genes like VviAGL11. Integrative genomic analyses resulted in 339 core candidate genes categorized into 13 functional categories related to seed development. Machine learning-based genomic selection achieved a remarkable prediction accuracy of 97% for seedlessness in grapevines. Our findings highlight the polygenic nature of seedlessness and provide candidate genes for molecular genetics and an effective prediction for seedlessness in grape genomic breeding.
无核性是鲜食葡萄(Vitis vinifera L.)品种选育的重要品质性状。然而,种子的发育涉及复杂的调控,且种子败育的多基因基础尚不清楚。在这里,我们结合比较基因组学、群体遗传学、数量遗传学和整合基因组学来揭示葡萄无核化的进化和多基因基础。我们为两个无核葡萄品种‘Thompson Seedless’(TS,同义词‘Sultania’)和‘Black Monukka’(BM)生成了单倍型分辨率基因组。比较基因组学鉴定了一个在无核品种中特异的约 4.25 Mb 半合子倒位,无核相关基因 VvTT16 和 VvSUS2 位于断点处。对 548 个葡萄品种的群体基因组分析揭示了两个不同的无核品种聚类,并且基于同源性的分析结果表明,无核性状的起源可以追溯到“Sultania”。基因渐渗而非趋同选择塑造了葡萄改良中无核化的进化历史。全基因组关联研究(GWAS)分析鉴定了 110 个与 634 个候选基因相关的数量性状位点(QTLs),包括以前未鉴定的候选基因,如三个 11S 球蛋白种子贮藏蛋白和两个细胞色素 P450 基因,以及 VviAGL11 等知名基因。整合基因组分析产生了 339 个核心候选基因,分为 13 个与种子发育相关的功能类别。基于机器学习的基因组选择实现了对葡萄无核性的预测准确率高达 97%。我们的研究结果突出了无核性的多基因性质,并为分子遗传学提供了候选基因,为葡萄基因组育种中的无核性提供了有效的预测。