Suppr超能文献

选择正确的电极表示方法进行真实生物电子界面建模:全面指南。

Choosing the right electrode representation for modeling real bioelectronic interfaces: a comprehensive guide.

机构信息

Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, 10000 Zagreb, Croatia.

Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.

出版信息

J Neural Eng. 2024 Aug 14;21(4). doi: 10.1088/1741-2552/ad6a8b.

Abstract

Producing realistic numerical models of neurostimulation electrodes in contact with the electrolyte and tissue, for use in time-domain finite element method simulations while maintaining a reasonable computational burden remains a challenge. We aim to provide a straightforward experimental-theoretical hybrid approach for common electrode materials (Ti, TiN, ITO, Au, Pt, IrOx) that are relevant to the research field of bioelectronics, along with all the information necessary to replicate our approach in arbitrary geometry for real-life experimental applications.We used electrochemical impedance spectroscopy (EIS) to extract the electrode parameters in the AC regime under different DC biases. The pulsed electrode response was obtained by fast amperometry (FA) to optimize and verify the previously obtained electrode parameters in a COMSOL Multiphysics model. For optimization of the electrode parameters a constant phase element (CPE) needed to be implemented in time-domain.We find that the parameters obtained by EIS can be used to accurately simulate pulsed response only close to the electrode open circuit potential, while at other potentials we give corrections to the obtained parameters, based on FA measurements. We also find that for many electrodes (Au, TiN, Pt, and IrOx), it is important to implement a distributed CPE rather than an ideal capacitor for estimating the electrode double-layer capacitance. We outline and provide examples for the novel time-domain implementation of the CPE for finite element method simulations in COMSOL Multiphysics.An overview of electrode parameters for some common electrode materials can be a valuable and useful tool in numerical bioelectronics models. A provided FEM implementation model can be readily adapted to arbitrary electrode geometries and used for various applications. Finally, the presented methodology for parametrization of electrode materials can be used for any materials of interest which were not covered by this work.

摘要

在时域有限元方法模拟中,生成与电解质和组织接触的神经刺激电极的逼真数值模型,同时保持合理的计算负担,仍然是一个挑战。我们的目标是为常见的电极材料(Ti、TiN、ITO、Au、Pt、IrOx)提供一种简单的实验-理论混合方法,这些材料与生物电子学研究领域相关,同时提供复制我们在任意几何形状下用于实际实验应用的方法所需的所有信息。

我们使用电化学阻抗谱(EIS)在不同的直流偏置下提取交流(AC)模式下的电极参数。通过快速安培法(FA)获得脉冲电极响应,以在 COMSOL Multiphysics 模型中优化和验证先前获得的电极参数。为了优化电极参数,需要在时域中实现恒相元件(CPE)。

我们发现,通过 EIS 获得的参数只能在接近电极开路电位的情况下准确模拟脉冲响应,而在其他电位下,我们根据 FA 测量结果对获得的参数进行修正。我们还发现,对于许多电极(Au、TiN、Pt 和 IrOx),对于估计电极双电层电容,实现分布式 CPE 而不是理想电容器非常重要。我们概述并提供了在 COMSOL Multiphysics 中为有限元方法模拟实现 CPE 的新的时域方法的示例。

一些常见电极材料的电极参数概述可以成为数值生物电子学模型的有价值和有用的工具。提供的有限元方法实施模型可以很容易地适应任意电极几何形状,并用于各种应用。最后,提出的电极材料参数化方法可以用于本工作未涵盖的任何感兴趣的材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验