Harley Dylan, Datta Ishaun, Klausen Frederik Ravn, Bluhm Andreas, França Daniel Stilck, Werner Albert H, Christandl Matthias
Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark.
Stanford University, 450 Serra Mall, Stanford, CA, 94305, USA.
Nat Commun. 2024 Aug 2;15(1):6527. doi: 10.1038/s41467-024-50744-9.
Quantum hardware has the potential to efficiently solve computationally difficult problems in physics and chemistry to reap enormous practical rewards. Analogue quantum simulation accomplishes this by using the dynamics of a controlled many-body system to mimic those of another system; such a method is feasible on near-term devices. We show that previous theoretical approaches to analogue quantum simulation suffer from fundamental barriers which prohibit scalable experimental implementation. By introducing a new mathematical framework and going beyond the usual toolbox of Hamiltonian complexity theory with an additional resource of engineered dissipation, we show that these barriers can be overcome. This provides a powerful new perspective for the rigorous study of analogue quantum simulators.
量子硬件有潜力高效解决物理和化学中计算困难的问题,从而获得巨大的实际收益。模拟量子模拟通过利用受控多体系统的动力学来模拟另一个系统的动力学来实现这一点;这种方法在近期设备上是可行的。我们表明,以前用于模拟量子模拟的理论方法存在基本障碍,这些障碍阻碍了可扩展的实验实现。通过引入一个新的数学框架,并超越哈密顿复杂性理论的常用工具箱,增加工程耗散这一额外资源,我们表明这些障碍是可以克服的。这为模拟量子模拟器的严格研究提供了一个强有力的新视角。