Suppr超能文献

深度学习利用阳性腹膜冲洗细胞学预测胰腺癌患者的 1 年预后。

Deep learning predicts the 1-year prognosis of pancreatic cancer patients using positive peritoneal washing cytology.

机构信息

Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.

Department of Investigative Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.

出版信息

Sci Rep. 2024 Aug 2;14(1):17059. doi: 10.1038/s41598-024-67757-5.

Abstract

Peritoneal washing cytology (CY) in patients with pancreatic cancer is mainly used for staging; however, it may also be used to evaluate the intraperitoneal status to predict a more accurate prognosis. Here, we investigated the potential of deep learning of CY specimen images for predicting the 1-year prognosis of pancreatic cancer in CY-positive patients. CY specimens from 88 patients with prognostic information were retrospectively analyzed. CY specimens scanned by the whole slide imaging device were segmented and subjected to deep learning with a Vision Transformer (ViT) and a Convolutional Neural Network (CNN). The results indicated that ViT and CNN predicted the 1-year prognosis from scanned images with accuracies of 0.8056 and 0.8009 in the area under the curve of the receiver operating characteristic curves, respectively. Patients predicted to survive 1 year or more by ViT showed significantly longer survivals by Kaplan-Meier analyses. The cell nuclei found to have a negative prognostic impact by ViT appeared to be neutrophils. Our results indicate that AI-mediated analysis of CY specimens can successfully predict the 1-year prognosis of patients with pancreatic cancer positive for CY. Intraperitoneal neutrophils may be a novel prognostic marker and therapeutic target for CY-positive patients with pancreatic cancer.

摘要

腹膜灌洗细胞学 (CY) 在胰腺癌患者中主要用于分期; 然而,它也可用于评估腹腔状况,以预测更准确的预后。在这里,我们研究了深度学习 CY 标本图像在预测 CY 阳性患者胰腺癌 1 年预后中的潜力。回顾性分析了 88 例有预后信息的患者的 CY 标本。使用全切片成像设备扫描 CY 标本,并使用 Vision Transformer (ViT) 和卷积神经网络 (CNN) 对其进行深度学习。结果表明,ViT 和 CNN 在受试者工作特征曲线的曲线下面积中预测 1 年预后的准确率分别为 0.8056 和 0.8009。通过 ViT 预测可存活 1 年或更长时间的患者,通过 Kaplan-Meier 分析显示其存活时间明显更长。ViT 发现对预后有负面影响的细胞核似乎是中性粒细胞。我们的结果表明,AI 介导的 CY 标本分析可以成功预测 CY 阳性胰腺癌患者的 1 年预后。腹腔内中性粒细胞可能是 CY 阳性胰腺癌患者的一种新的预后标志物和治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c65/11297136/f85d310eb5e9/41598_2024_67757_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验