Suppr超能文献

在小鼠血液储存期间不同表型的红细胞之间的分子通讯。

Molecular communication between red blood cells of different phenotypes during blood storage in mice.

机构信息

Department of Pathology, University of Virginia, Charlottesville, Virginia, USA.

Department of Biochemistry and Molecular Genetics, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA.

出版信息

Transfusion. 2024 Sep;64(9):1762-1771. doi: 10.1111/trf.17960. Epub 2024 Aug 2.

Abstract

BACKGROUND

The cellular and molecular changes during red blood cell (RBC) storage that affect posttransfusion recovery (PTR) remain incompletely understood. We have previously reported that RBCs of different storage biology cross-regulate each other when stored together (co-storage cross-regulation [CSCR]). However, the mechanism of CSCR is unclear. In the current study, we tested the hypothesis that CSCR involves acquisition of molecular signatures associated with PTR.

STUDY DESIGN AND METHODS

The whole blood compartment of either B6 or FVB mice was biotinylated in vivo prior to blood collection and storage. Bio-B6 or Bio.FVB were stored with RBCs from B6 mice transgenic for green florescent protein (GFP) (B6.GFP). After storage, avidin-magnetic beads were used to simultaneous purify Bio-RBCs (positive selection) and B6.GFPs (negative selection). Isolated populations were analyzed by transfusion to establish PTR, and subjected to metabolomic and proteomic analysis.

RESULTS

B6 RBCs acquired molecular signatures associated with stored FVB RBCs at both the metabolomic and proteomic level including metabolites associated with energy metabolism, oxidative stress regulation, and oxidative damage. Mitochondrial signatures were also acquired by B6 RBCs. Protein signatures acquired by B6 RBCs include proteins associated with vesiculation.

CONCLUSION

The data presented herein demonstrate the appearance of multiple molecular changes from poor-storing RBCs in good-storing RBCs during co-storage. Whether this is a result of damage causing intrinsic molecular changes in B6 RBCs or if molecules of FVB RBC origin are transferred to B6 RBCs remains unclear. These studies broaden our mechanistic understanding of RBC storage (in particular) and potentially RBC biology (in general).

摘要

背景

影响输血后恢复(PTR)的红细胞(RBC)储存期间的细胞和分子变化仍不完全清楚。我们之前曾报道过,当一起储存时,不同储存生物学特性的 RBC 会相互交叉调节(CSCR)。然而,CSCR 的机制尚不清楚。在当前的研究中,我们检验了这样一个假设,即 CSCR 涉及获得与 PTR 相关的分子特征。

研究设计和方法

在收集和储存血液之前,通过体内生物素化 B6 或 FVB 小鼠的全血区室。将 Bio-B6 或 Bio.FVB 与 B6 小鼠转绿色荧光蛋白(GFP)(B6.GFP)的 RBC 一起储存。储存后,使用亲和素-磁珠同时纯化 Bio-RBC(阳性选择)和 B6.GFPs(阴性选择)。分离的群体通过输血进行分析以建立 PTR,并进行代谢组学和蛋白质组学分析。

结果

B6 RBC 在代谢组学和蛋白质组学水平上均获得与储存的 FVB RBC 相关的分子特征,包括与能量代谢、氧化应激调节和氧化损伤相关的代谢物。B6 RBC 还获得了线粒体特征。B6 RBC 获得的蛋白质特征包括与囊泡形成相关的蛋白质。

结论

本文提供的数据表明,在共储存期间,良好储存的 RBC 中出现了多种来自储存不良的 RBC 的分子变化。这是 B6 RBC 中由于损伤引起的内在分子变化的结果,还是 FVB RBC 起源的分子转移到 B6 RBC 中,尚不清楚。这些研究拓宽了我们对 RBC 储存(特别是)和潜在 RBC 生物学(一般)的机制理解。

相似文献

1
Molecular communication between red blood cells of different phenotypes during blood storage in mice.
Transfusion. 2024 Sep;64(9):1762-1771. doi: 10.1111/trf.17960. Epub 2024 Aug 2.
4
Transfusion thresholds for guiding red blood cell transfusion.
Cochrane Database Syst Rev. 2021 Dec 21;12(12):CD002042. doi: 10.1002/14651858.CD002042.pub5.
5
Rapid clearance of storage-induced microerythrocytes alters transfusion recovery.
Blood. 2021 Apr 29;137(17):2285-2298. doi: 10.1182/blood.2020008563.
6
Murine red blood cells from genetically distinct donors cross-regulate when stored together.
Transfusion. 2017 Nov;57(11):2657-2664. doi: 10.1111/trf.14313. Epub 2017 Sep 16.
8
Transfusion of blood and blood products for the management of postpartum haemorrhage.
Cochrane Database Syst Rev. 2025 Feb 6;2(2):CD016168. doi: 10.1002/14651858.CD016168.
9
Hypoxic storage of murine red blood cells improves energy metabolism and post-transfusion recoveries.
Blood Transfus. 2023 Jan;21(1):50-61. doi: 10.2450/2022.0172-22. Epub 2022 Oct 21.
10
IgG2b enhances alloantibodies to stored red blood cells.
Transfusion. 2025 Jun 9. doi: 10.1111/trf.18306.

引用本文的文献

1
Red blood cell metabolism: a window on systems health towards clinical metabolomics.
Curr Opin Hematol. 2025 May 1;32(3):111-119. doi: 10.1097/MOH.0000000000000863. Epub 2025 Mar 13.

本文引用的文献

1
Reticulocytes in donor blood units enhance red blood cell alloimmunization.
Haematologica. 2023 Oct 1;108(10):2639-2651. doi: 10.3324/haematol.2023.282815.
2
Mitochondria Transfer in Bone Marrow Hematopoietic Activity.
Curr Stem Cell Rep. 2021 Mar;7(1):1-12. doi: 10.1007/s40778-020-00185-z. Epub 2021 Jan 14.
3
Retention of functional mitochondria in mature red blood cells from patients with sickle cell disease.
Br J Haematol. 2022 Aug;198(3):574-586. doi: 10.1111/bjh.18287. Epub 2022 Jun 7.
4
Supplemental findings of the 2019 National Blood Collection and Utilization Survey.
Transfusion. 2021 Sep;61 Suppl 2(Suppl 2):S11-S35. doi: 10.1111/trf.16606. Epub 2021 Aug 1.
5
Neural stem cells traffic functional mitochondria via extracellular vesicles.
PLoS Biol. 2021 Apr 7;19(4):e3001166. doi: 10.1371/journal.pbio.3001166. eCollection 2021 Apr.
6
Evaluation of a flow cytometric test for G6PD-deficient erythrocytes.
Trop Med Int Health. 2021 Apr;26(4):462-468. doi: 10.1111/tmi.13547. Epub 2021 Feb 2.
7
Differences in Steap3 expression are a mechanism of genetic variation of RBC storage and oxidative damage in mice.
Blood Adv. 2019 Aug 13;3(15):2272-2285. doi: 10.1182/bloodadvances.2019000605.
9
High-Throughput Metabolomics: Isocratic and Gradient Mass Spectrometry-Based Methods.
Methods Mol Biol. 2019;1978:13-26. doi: 10.1007/978-1-4939-9236-2_2.
10
Red blood cell storage lesion: causes and potential clinical consequences.
Blood Transfus. 2019 Jan;17(1):27-52. doi: 10.2450/2019.0217-18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验