Suppr超能文献

缺氧保存的鼠类红细胞可改善能量代谢和输血后的恢复情况。

Hypoxic storage of murine red blood cells improves energy metabolism and post-transfusion recoveries.

机构信息

Department of Pathology, University of Virginia, Charlottesville, VA, United States of America.

Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States of America.

出版信息

Blood Transfus. 2023 Jan;21(1):50-61. doi: 10.2450/2022.0172-22. Epub 2022 Oct 21.

Abstract

BACKGROUND

The Red blood cell (RBC) storage lesion results in decreased circulation and function of transfused RBCs. Elevated oxidant stress and impaired energy metabolism are a hallmark of the storage lesion in both human and murine RBCs. Although human studies don't suffer concerns that findings may not translate, they do suffer from genetic and environmental variability amongst subjects. Murine models can control for genetics, environment, and much interventional experimentation can be carried out in mice that is neither technically feasible nor ethical in humans. However, murine models are only useful to the extent that they have similar biology to humans. Hypoxic storage has been shown to mitigate the storage lesion in human RBCs, but has not been investigated in mice.

MATERIALS AND METHODS

RBCs from a C57BL6/J mouse strain were stored under normoxic (untreated) or hypoxic conditions (SO2 ~ 26%) for 1h, 7 and 12 days. Samples were tested for metabolomics at steady state, tracing experiments with 1,2,3-C-glucose, proteomics and end of storage post transfusion recovery.

RESULTS

Hypoxic storage improved post-transfusion recovery and energy metabolism, including increased steady state and C-labeled metabolites from glycolysis, high energy purines (adenosine triphosphate) and 2,3-diphospholgycerate. Hypoxic storage promoted glutaminolysis, increased glutathione pools, and was accompanied by elevation in the levels of free fatty acids and acyl-carnitines.

DISCUSSION

This study isolates hypoxia, as a single independent variable, and shows similar effects as seen in human studies. These findings also demonstrate the translatability of murine models for hypoxic RBC storage and provide a pre-clinical platform for ongoing study.

摘要

背景

红细胞(RBC)储存损伤导致输注 RBC 的循环和功能下降。氧化应激升高和能量代谢受损是人类和鼠类 RBC 储存损伤的标志。尽管人体研究不存在发现可能无法转化的问题,但它们确实存在受试者之间遗传和环境变异性的问题。鼠类模型可以控制遗传、环境,并且可以在小鼠中进行许多干预性实验,这些实验在人类中既不可行也不道德。然而,只有当鼠类模型与人类具有相似的生物学特性时,它们才具有实用性。低氧储存已被证明可以减轻人类 RBC 的储存损伤,但尚未在小鼠中进行研究。

材料和方法

来自 C57BL6/J 小鼠品系的 RBC 在常氧(未处理)或低氧条件(SO2~26%)下储存 1h、7 天和 12 天。在稳定状态下对样品进行代谢组学测试,用 1,2,3-C-葡萄糖进行追踪实验,进行蛋白质组学和输注后储存结束时的恢复。

结果

低氧储存改善了输注后的恢复和能量代谢,包括增加了糖酵解的稳态和 C 标记代谢物、高能嘌呤(三磷酸腺苷)和 2,3-二磷酸甘油酸。低氧储存促进了谷氨酰胺分解,增加了谷胱甘肽池,同时伴随着游离脂肪酸和酰基肉碱水平的升高。

讨论

本研究将低氧作为单一的独立变量进行分离,并显示出与人类研究中相似的效果。这些发现还证明了低氧 RBC 储存的鼠类模型的可转移性,并为正在进行的研究提供了临床前平台。

相似文献

1
Hypoxic storage of murine red blood cells improves energy metabolism and post-transfusion recoveries.
Blood Transfus. 2023 Jan;21(1):50-61. doi: 10.2450/2022.0172-22. Epub 2022 Oct 21.
3
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
4
Prolonged storage of packed red blood cells for blood transfusion.
Cochrane Database Syst Rev. 2015 Jul 14;2015(7):CD009330. doi: 10.1002/14651858.CD009330.pub2.
7
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.
Clin Orthop Relat Res. 2025 Jan 1;483(1):39-48. doi: 10.1097/CORR.0000000000003161. Epub 2024 Jun 21.
8
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
9
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.

引用本文的文献

1
Erythrocytes enhance oxygen-carrying capacity through self-regulation.
Front Physiol. 2025 May 16;16:1592176. doi: 10.3389/fphys.2025.1592176. eCollection 2025.
2
3
The Redox Process in Red Blood Cells: Balancing Oxidants and Antioxidants.
Antioxidants (Basel). 2024 Dec 31;14(1):36. doi: 10.3390/antiox14010036.
5
Ferroptosis regulates hemolysis in stored murine and human red blood cells.
Blood. 2025 Feb 13;145(7):765-783. doi: 10.1182/blood.2024026109.
6
Molecular modifications to mitigate oxidative stress and improve red blood cell storability.
Front Physiol. 2024 Oct 30;15:1499308. doi: 10.3389/fphys.2024.1499308. eCollection 2024.
7
Primaquine-5,6-Orthoquinone Is Directly Hemolytic to Older G6PD Deficient RBCs in a Humanized Mouse Model.
J Pharmacol Exp Ther. 2024 Sep 18;391(1):119-129. doi: 10.1124/jpet.124.002218.
9
Metabolite and protein shifts in mature erythrocyte under hypoxia.
iScience. 2024 Feb 23;27(4):109315. doi: 10.1016/j.isci.2024.109315. eCollection 2024 Apr 19.
10
Red Blood Cell Metabolism In Vivo and In Vitro.
Metabolites. 2023 Jun 27;13(7):793. doi: 10.3390/metabo13070793.

本文引用的文献

1
Deuterated Linoleic Acid Attenuates the RBC Storage Lesion in a Mouse Model of Poor RBC Storage.
Front Physiol. 2022 Apr 26;13:868578. doi: 10.3389/fphys.2022.868578. eCollection 2022.
2
High-Throughput Metabolomics Platform for the Rapid Data-Driven Development of Novel Additive Solutions for Blood Storage.
Front Physiol. 2022 Mar 14;13:833242. doi: 10.3389/fphys.2022.833242. eCollection 2022.
4
Donor genetic and nongenetic factors affecting red blood cell transfusion effectiveness.
JCI Insight. 2022 Jan 11;7(1):e152598. doi: 10.1172/jci.insight.152598.
5
Mouse background genetics in biomedical research: The devil's in the details.
Transfusion. 2021 Oct;61(10):3017-3025. doi: 10.1111/trf.16628. Epub 2021 Sep 3.
6
MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights.
Nucleic Acids Res. 2021 Jul 2;49(W1):W388-W396. doi: 10.1093/nar/gkab382.
7
The interactome of the N-terminus of band 3 regulates red blood cell metabolism and storage quality.
Haematologica. 2021 Nov 1;106(11):2971-2985. doi: 10.3324/haematol.2020.278252.
8
Fatty acid desaturase activity in mature red blood cells and implications for blood storage quality.
Transfusion. 2021 Jun;61(6):1867-1883. doi: 10.1111/trf.16402. Epub 2021 Apr 26.
9
Quantifying dynamic range in red blood cell energetics: Evidence of progressive energy failure during storage.
Transfusion. 2021 May;61(5):1586-1599. doi: 10.1111/trf.16395. Epub 2021 Apr 8.
10
Blood donor exposome and impact of common drugs on red blood cell metabolism.
JCI Insight. 2021 Feb 8;6(3):146175. doi: 10.1172/jci.insight.146175.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验