Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
ACS Chem Biol. 2024 Aug 16;19(8):1794-1802. doi: 10.1021/acschembio.4c00304. Epub 2024 Aug 3.
Protein degradation is a tightly regulated biological process that maintains bacterial proteostasis. ClpPs are a highly conserved family of serine proteases that associate with the AAA + ATPase (an ATPase associated with diverse cellular activities) to degrade protein substrates. Identification and biochemical characterization of protein substrates for the AAA + ATPase-dependent ClpP degradation systems are considered essential for gaining an understanding of the molecular operation of the complex ClpP degradation machinery. Consequently, expanding the repertoire of protein substrates that can be degraded in vitro and within bacterial cells is necessary. Here, we report that AAA + ATPase-ClpP proteolytic complexes promote degradation of the secondary metabolite surfactin synthetases SrfAA, SrfAB, and SrfAC in . On the basis of in vitro and in-cell studies coupled with activity-based protein profiling of nonribosomal peptide synthetases, we showed that SrfAC is targeted to the ClpC-ClpP proteolytic complex, whereas SrfAA is hydrolyzed not only by the ClpC-ClpP proteolytic complex but also by different ClpP proteolytic complexes. Furthermore, SrfAB does not appear to be a substrate for the ClpC-ClpP proteolytic complex, thereby implying that other ClpP proteolytic complexes are involved in the degradation of this surfactin synthetase. Natural product biosynthesis is regulated by the AAA + ATPase-ClpP degradation system, indicating that protein degradation plays a role in the regulatory stages of biosynthesis. However, few studies have examined the regulation of protein degradation levels. Furthermore, SrfAA, SrfAB, and SrfAC were identified as protein substrates for AAA + ATPase-ClpP degradation systems, thereby contributing to a better understanding of the complex ClpP degradation machinery.
蛋白降解是一个严格调控的生物学过程,它维持着细菌的蛋白质稳态。ClpP 是一类高度保守的丝氨酸蛋白酶家族,与 AAA+ATP 酶(一种与多种细胞活动相关的 ATP 酶)结合,以降解蛋白底物。鉴定和生化表征 AAA+ATP 酶依赖性 ClpP 降解系统的蛋白底物,对于理解复杂的 ClpP 降解机制的分子运作是必不可少的。因此,扩大可在体外和细菌细胞内降解的蛋白底物谱是必要的。在这里,我们报告 AAA+ATP 酶-ClpP 蛋白酶体复合物促进了次级代谢产物表面活性剂合成酶 SrfAA、SrfAB 和 SrfAC 在 中的降解。基于体外和细胞内研究,并结合非核糖体肽合成酶的活性基蛋白谱分析,我们表明 SrfAC 被靶向到 ClpC-ClpP 蛋白酶体,而 SrfAA 不仅被 ClpC-ClpP 蛋白酶体水解,而且被不同的 ClpP 蛋白酶体水解。此外,SrfAB 似乎不是 ClpC-ClpP 蛋白酶体的底物,这表明其他 ClpP 蛋白酶体参与了这种表面活性剂合成酶的降解。天然产物生物合成受到 AAA+ATP 酶-ClpP 降解系统的调控,这表明蛋白降解在生物合成的调控阶段发挥作用。然而,很少有研究检查蛋白降解水平的调控。此外,SrfAA、SrfAB 和 SrfAC 被鉴定为 AAA+ATP 酶-ClpP 降解系统的蛋白底物,从而有助于更好地理解复杂的 ClpP 降解机制。