Suppr超能文献

亨廷顿病患者原代皮肤成纤维细胞中的异常迁移特征,为使用基于图像的机器学习工具来揭示疾病进展提供了潜力。

Aberrant migration features in primary skin fibroblasts of Huntington's disease patients hold potential for unraveling disease progression using an image based machine learning tool.

机构信息

Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel.

Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel; School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel.

出版信息

Comput Biol Med. 2024 Sep;180:108970. doi: 10.1016/j.compbiomed.2024.108970. Epub 2024 Aug 2.

Abstract

Huntington's disease (HD) is a complex neurodegenerative disorder with considerable heterogeneity in clinical manifestations. While CAG repeat length is a known predictor of disease severity, this heterogeneity suggests the involvement of additional genetic and environmental factors. Previously we revealed that HD primary fibroblasts exhibit unique features, including distinct nuclear morphology and perturbed actin cap, resembling characteristics seen in Hutchinson-Gilford Progeria Syndrome (HGPS). This study establishes a link between actin cap deficiency and cell motility in HD, which correlates with the HD patient disease severity. Here, we examined single-cell motility imaging features in HD primary fibroblasts to explore in depth the relationship between cell migration patterns and their respective HD patients' clinical severity status (premanifest, mild and severe). The single-cell analysis revealed a decline in overall cell motility in correlation with HD severity, being most prominent in severe HD subgroup and HGPS. Moreover, we identified seven distinct spatial clusters of cell migration in all groups, which their proportion varies within each group becoming a significant HD severity classifier between HD subgroups. Next, we investigated the relationship between Lamin B1 expression, serving as nuclear envelope morphology marker, and cell motility finding that changes in Lamin B1 levels are associated with specific motility patterns within HD subgroups. Based on these data we present an accurate machine learning classifier offering comprehensive exploration of cellular migration patterns and disease severity markers for future accurate drug evaluation opening new opportunities for personalized treatment approaches in this challenging disorder.

摘要

亨廷顿病(HD)是一种复杂的神经退行性疾病,临床表现具有很大的异质性。虽然 CAG 重复长度是疾病严重程度的已知预测因子,但这种异质性表明还涉及其他遗传和环境因素。此前我们发现 HD 原代成纤维细胞表现出独特的特征,包括独特的核形态和紊乱的肌动蛋白帽,类似于亨廷顿舞蹈病患者的特征。这项研究建立了肌动蛋白帽缺陷与 HD 细胞迁移之间的联系,这与 HD 患者的疾病严重程度相关。在这里,我们检查了 HD 原代成纤维细胞的单细胞迁移成像特征,以深入探讨细胞迁移模式与其各自的 HD 患者临床严重程度状态(前显型、轻度和重度)之间的关系。单细胞分析显示,整体细胞迁移能力与 HD 严重程度呈负相关,在重度 HD 亚组和 HGPS 中最为明显。此外,我们在所有组中都鉴定到了七个不同的细胞迁移空间簇,它们的比例在每个组中都有所不同,成为 HD 亚组之间的显著严重程度分类器。接下来,我们研究了核膜形态标志物 lamin B1 表达与细胞迁移之间的关系,发现 lamin B1 水平的变化与 HD 亚组内特定的迁移模式有关。基于这些数据,我们提出了一个准确的机器学习分类器,提供了对细胞迁移模式和疾病严重程度标志物的全面探索,为未来在这种具有挑战性的疾病中进行准确的药物评估提供了新的机会,为个性化治疗方法开辟了新的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验