Suppr超能文献

CytoGAN:基于结构保持的未配对染色转移在细胞病理学图像分析中的应用。

CytoGAN: Unpaired staining transfer by structure preservation for cytopathology image analysis.

机构信息

School of Automation Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China.

School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China.

出版信息

Comput Biol Med. 2024 Sep;180:108942. doi: 10.1016/j.compbiomed.2024.108942. Epub 2024 Aug 2.

Abstract

With the development of digital pathology, deep learning is increasingly being applied to endometrial cell morphology analysis for cancer screening. And cytology images with different staining may degrade the performance of these analysis algorithms. To address the impact of staining patterns, many strategies have been proposed and hematoxylin and eosin (H&E) images have been transferred to other staining styles. However, none of the existing methods are able to generate realistic cytological images with preserved cellular layout, and many important clinical structural information is lost. To address the above issues, we propose a different staining transformation model, CytoGAN, which can quickly and realistically generate images with different staining styles. It includes a novel structure preservation module that preserves the cell structure well, even if the resolution or cell size between the source and target domains do not match. Meanwhile, a stain adaptive module is designed to help the model generate realistic and high-quality endometrial cytology images. We compared our model with ten state-of-the-art stain transformation models and evaluated by two pathologists. Furthermore, in the downstream endometrial cancer classification task, our algorithm improves the robustness of the classification model on multimodal datasets, with more than 20 % improvement in accuracy. We found that generating specified specific stains from existing H&E images improves the diagnosis of endometrial cancer. Our code will be available on github.

摘要

随着数字病理学的发展,深度学习越来越多地应用于子宫内膜细胞形态分析以进行癌症筛查。而不同染色的细胞学图像可能会降低这些分析算法的性能。为了解决染色模式的影响,已经提出了许多策略,并将苏木精和伊红(H&E)图像转换为其他染色样式。然而,现有的方法都无法生成具有保留细胞布局的逼真细胞学图像,并且许多重要的临床结构信息丢失。为了解决上述问题,我们提出了一种不同的染色转换模型 CytoGAN,它可以快速、真实地生成具有不同染色风格的图像。它包括一个新颖的结构保持模块,可以很好地保持细胞结构,即使源域和目标域之间的分辨率或细胞大小不匹配。同时,设计了一个染色自适应模块来帮助模型生成逼真的高质量子宫内膜细胞学图像。我们将我们的模型与十种最先进的染色转换模型进行了比较,并由两位病理学家进行了评估。此外,在下游的子宫内膜癌分类任务中,我们的算法提高了分类模型在多模态数据集上的鲁棒性,准确性提高了 20%以上。我们发现,从现有的 H&E 图像中生成指定的特定染色可以改善子宫内膜癌的诊断。我们的代码将在 github 上提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验