Cancer Genome Dynamics Project, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.
Cancer Genome Dynamics Project, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.
DNA Repair (Amst). 2024 Sep;141:103740. doi: 10.1016/j.dnarep.2024.103740. Epub 2024 Jul 30.
An organism's genomic DNA must be accurately duplicated during each cell cycle. DNA synthesis is catalysed by DNA polymerase enzymes, which extend nucleotide polymers in a 5' to 3' direction. This inherent directionality necessitates that one strand is synthesised forwards (leading), while the other is synthesised backwards discontinuously (lagging) to couple synthesis to the unwinding of duplex DNA. Eukaryotic cells possess many diverse polymerases that coordinate to replicate DNA, with the three main replicative polymerases being Pol α, Pol δ and Pol ε. Studies conducted in yeasts and human cells utilising mutant polymerases that incorporate molecular signatures into nascent DNA implicate Pol ε in leading strand synthesis and Pol α and Pol δ in lagging strand replication. Recent structural insights have revealed how the spatial organization of these enzymes around the core helicase facilitates their strand-specific roles. However, various challenging situations during replication require flexibility in the usage of these enzymes, such as during replication initiation or encounters with replication-blocking adducts. This review summarises the roles of the replicative polymerases in bulk DNA replication and explores their flexible and dynamic deployment to complete genome replication. We also examine how polymerase usage patterns can inform our understanding of global replication dynamics by revealing replication fork directionality to identify regions of replication initiation and termination.
在每个细胞周期中,生物体的基因组 DNA 必须准确复制。DNA 合成由 DNA 聚合酶催化,这些酶将核苷酸聚合物从 5' 端延伸到 3' 端。这种内在的方向性要求一条链向前(前导链)合成,而另一条链不连续地向后(滞后链)合成,以将合成与双链 DNA 的解旋偶联。真核细胞拥有许多不同的聚合酶来协调 DNA 的复制,其中三种主要的复制聚合酶是 Pol α、Pol δ 和 Pol ε。在酵母和人类细胞中进行的利用将分子特征整合到新生 DNA 中的突变聚合酶的研究表明,Pol ε 参与前导链合成,Pol α 和 Pol δ 参与滞后链复制。最近的结构见解揭示了这些酶在核心解旋酶周围的空间组织如何促进它们的链特异性作用。然而,复制过程中的各种挑战性情况需要这些酶的使用具有灵活性,例如在复制起始或遇到复制阻断加合物时。本文综述了复制聚合酶在 DNA 复制中的作用,并探讨了它们在完成基因组复制过程中的灵活和动态部署。我们还通过揭示复制叉的方向性来确定复制起始和终止区域,检查聚合酶使用模式如何通过识别复制叉的方向来告知我们对全局复制动态的理解。