Suppr超能文献

DGSD:基于 EEG 的听觉空间注意检测的动态图自蒸馏。

DGSD: Dynamical graph self-distillation for EEG-based auditory spatial attention detection.

机构信息

Anhui Provincial Key Laboratory of Multimodal Cognitive Computation, School of Computer Science and Technology, Anhui University, Hefei 230601, China.

Department of Automation, Tsinghua University, Beijing 100190, China.

出版信息

Neural Netw. 2024 Nov;179:106580. doi: 10.1016/j.neunet.2024.106580. Epub 2024 Jul 26.

Abstract

Auditory Attention Detection (AAD) aims to detect the target speaker from brain signals in a multi-speaker environment. Although EEG-based AAD methods have shown promising results in recent years, current approaches primarily rely on traditional convolutional neural networks designed for processing Euclidean data like images. This makes it challenging to handle EEG signals, which possess non-Euclidean characteristics. In order to address this problem, this paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input. Specifically, to effectively represent the non-Euclidean properties of EEG signals, dynamical graph convolutional networks are applied to represent the graph structure of EEG signals, which can also extract crucial features related to auditory spatial attention in EEG signals. In addition, to further improve AAD detection performance, self-distillation, consisting of feature distillation and hierarchical distillation strategies at each layer, is integrated. These strategies leverage features and classification results from the deepest network layers to guide the learning of shallow layers. Our experiments are conducted on two publicly available datasets, KUL and DTU. Under a 1-second time window, we achieve results of 90.0% and 79.6% accuracy on KUL and DTU, respectively. We compare our DGSD method with competitive baselines, and the experimental results indicate that the detection performance of our proposed DGSD method is not only superior to the best reproducible baseline but also significantly reduces the number of trainable parameters by approximately 100 times.

摘要

听觉注意力检测(AAD)旨在从多说话人环境中的脑信号中检测目标说话人。尽管基于 EEG 的 AAD 方法近年来取得了有希望的结果,但目前的方法主要依赖于专为处理像图像这样的欧几里得数据而设计的传统卷积神经网络。这使得处理 EEG 信号变得具有挑战性,EEG 信号具有非欧几里得特征。为了解决这个问题,本文提出了一种用于 AAD 的动态图自蒸馏(DGSD)方法,该方法不需要语音刺激作为输入。具体来说,为了有效地表示 EEG 信号的非欧几里得特性,应用动态图卷积网络来表示 EEG 信号的图结构,这也可以提取 EEG 信号中与听觉空间注意力相关的关键特征。此外,为了进一步提高 AAD 检测性能,集成了自蒸馏,包括特征蒸馏和每个层的分层蒸馏策略。这些策略利用来自最深网络层的特征和分类结果来指导浅层的学习。我们在两个公开可用的数据集 KUL 和 DTU 上进行实验。在 1 秒的时间窗口内,我们在 KUL 和 DTU 上分别实现了 90.0%和 79.6%的准确率。我们将我们的 DGSD 方法与有竞争力的基线进行比较,实验结果表明,我们提出的 DGSD 方法的检测性能不仅优于最佳可重现基线,而且还显著减少了约 100 倍的可训练参数数量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验