School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, PR China.
School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, PR China.
J Neurosci Methods. 2024 Nov;411:110276. doi: 10.1016/j.jneumeth.2024.110276. Epub 2024 Sep 3.
Emotion is an important area in neuroscience. Cross-subject emotion recognition based on electroencephalogram (EEG) data is challenging due to physiological differences between subjects. Domain gap, which refers to the different distributions of EEG data at different subjects, has attracted great attention for cross-subject emotion recognition.
This study focuses on narrowing the domain gap between subjects through the emotional frequency bands and the relationship information between EEG channels. Emotional frequency band features represent the energy distribution of EEG data in different frequency ranges, while relationship information between EEG channels provides spatial distribution information about EEG data.
To achieve this, this paper proposes a model called the Frequency Band Attention Graph convolutional Adversarial neural Network (FBAGAN). This model includes three components: a feature extractor, a classifier, and a discriminator. The feature extractor consists of a layer with a frequency band attention mechanism and a graph convolutional neural network. The mechanism effectively extracts frequency band information by assigning weights and Graph Convolutional Networks can extract relationship information between EEG channels by modeling the graph structure. The discriminator then helps minimize the gap in the frequency information and relationship information between the source and target domains, improving the model's ability to generalize.
The FBAGAN model is extensively tested on the SEED, SEED-IV, and DEAP datasets. The accuracy and standard deviation scores are 88.17% and 4.88, respectively, on the SEED dataset, and 77.35% and 3.72 on the SEED-IV dataset. On the DEAP dataset, the model achieves 69.64% for Arousal and 65.18% for Valence. These results outperform most existing models.
The experiments indicate that FBAGAN effectively addresses the challenges of transferring EEG channel domain and frequency band domain, leading to improved performance.
情绪是神经科学中的一个重要领域。基于脑电图(EEG)数据的跨主体情绪识别由于主体之间的生理差异而具有挑战性。域间隙是指不同主体的 EEG 数据分布不同,它已引起了跨主体情绪识别的关注。
本研究专注于通过情绪频带和 EEG 通道之间的关系信息来缩小主体之间的域间隙。情绪频带特征表示 EEG 数据在不同频带范围内的能量分布,而 EEG 通道之间的关系信息提供了 EEG 数据的空间分布信息。
为了实现这一点,本文提出了一种称为频带注意力图卷积对抗神经网络(FBAGAN)的模型。该模型包括三个组件:特征提取器、分类器和鉴别器。特征提取器由具有频带注意力机制和图卷积神经网络的层组成。该机制通过分配权重来有效地提取频带信息,图卷积神经网络通过对图结构进行建模来提取 EEG 通道之间的关系信息。鉴别器然后有助于最小化源域和目标域之间的频率信息和关系信息差距,从而提高模型的泛化能力。
FBAGAN 模型在 SEED、SEED-IV 和 DEAP 数据集上进行了广泛的测试。在 SEED 数据集上,FBAGAN 的准确率和标准差分数分别为 88.17%和 4.88,在 SEED-IV 数据集上的准确率和标准差分数分别为 77.35%和 3.72。在 DEAP 数据集上,模型在唤醒度上达到 69.64%,在效价上达到 65.18%。这些结果优于大多数现有的模型。
实验表明,FBAGAN 有效地解决了 EEG 通道域和频带域迁移的挑战,从而提高了性能。