School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
Water Res. 2024 Oct 1;263:122160. doi: 10.1016/j.watres.2024.122160. Epub 2024 Jul 27.
The accurate prediction of chlorophyll-a (chl-a) concentration in coastal waters is essential to coastal economies and ecosystems as it serves as the key indicator of harmful algal blooms. Although powerful machine learning methods have made strides in forecasting chl-a concentrations, there remains a gap in effectively modeling the dynamic temporal patterns and dealing with data noise and unreliability. To wiggle out of quagmires, we introduce an innovative deep learning prediction model (termed ChloroFormer) by integrating Transformer networks with Fourier analysis within a decomposition architecture, utilizing coastal in-situ data from two distinct study areas. Our proposed model exhibits superior capabilities in capturing both short-term and middle-term dependency patterns in chl-a concentrations, surpassing the performance of six other deep learning models in multistep-ahead predictive accuracy. Particularly in scenarios involving extreme and frequent blooms, our proposed model shows exceptional predictive performance, especially in accurately forecasting peak chl-a concentrations. Further validation through Kolmogorov-Smirnov tests attests that our model not only replicates the actual dynamics of chl-a concentrations but also preserves the distribution of observation data, showcasing its robustness and reliability. The presented deep learning model addresses the critical need for accurate prediction on chl-a concentrations, facilitating the exploration of marine observations with complex dynamic temporal patterns, thereby supporting marine conservation and policy-making in coastal areas.
准确预测沿海水域的叶绿素-a(chl-a)浓度对于沿海经济和生态系统至关重要,因为它是有害藻类大量繁殖的关键指标。尽管强大的机器学习方法在预测 chl-a 浓度方面取得了进展,但在有效建模动态时间模式以及处理数据噪声和不可靠性方面仍存在差距。为了摆脱困境,我们引入了一种创新的深度学习预测模型(称为 ChloroFormer),该模型在分解架构中结合了 Transformer 网络和傅里叶分析,利用来自两个不同研究区域的沿海现场数据。我们提出的模型在捕捉 chl-a 浓度的短期和中期依赖模式方面表现出卓越的能力,在多步预测精度方面优于其他六个深度学习模型。特别是在涉及极端和频繁爆发的情况下,我们提出的模型表现出出色的预测性能,特别是在准确预测 chl-a 浓度峰值方面。通过柯尔莫哥洛夫-斯米尔诺夫检验进一步验证表明,我们的模型不仅复制了 chl-a 浓度的实际动态,而且保留了观测数据的分布,展示了其稳健性和可靠性。所提出的深度学习模型满足了对 chl-a 浓度进行准确预测的关键需求,促进了对具有复杂动态时间模式的海洋观测的探索,从而支持沿海地区的海洋保护和政策制定。