Suppr超能文献

一种更全面的模型,以更好地筛选出慢性乙型肝炎患者的抗病毒治疗候选药物。

A comprehensive model to better screen out antiviral treatment candidates for chronic hepatitis B patients.

机构信息

Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.

Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.

出版信息

Int Immunopharmacol. 2024 Oct 25;140:112848. doi: 10.1016/j.intimp.2024.112848. Epub 2024 Aug 2.

Abstract

BACKGROUND

Chronic hepatitis B virus (HBV) infection is a serious human health threat given its high morbidity and mortality. Timely and effective antiviral treatment can postpone liver disease progression and reduce the occurrence of HBV-related end-stage liver disease. At present, the antiviral treatment criteria are mainly based on alanine transaminase (ALT) levels, HBV DNA levels and HBV e antigen levels according to the American Association for the Study of Liver Diseases treatment guidelines. However, some chronic hepatitis B (CHB) patients not meeting the above criteria still experience liver disease progression without antiviral treatment. It is urgent to identify a more comprehensive tool to screen out more antiviral treatment candidates as soon as possible.

METHODS

Considering the vital role of the immune response in the development of HBV infection and CHB cure, we collected data from 335 treatment-naïve CHB patients and comprehensively analysed their clinical and immune traits (including innate and adaptive responses). The immune parameters were obtained by flow cytometry. Finally, we established a model that can better distinguished CHB patients who need treatment through machine learning and LASSO regression of serological and immune parameters.

RESULTS

Through a series of analyses, we selected four important clinical parameters (ALT, HBV DNA, the Fibroscan value, and the A/G ratio) and four immune indicators (NKbright + NKp44+, NKbright + NKG2A+, NKT+GranzymeB+, and CD3 + CD107a + ) from more than 200 variables and then successfully established a mathematical model with high sensitivity and specificity to better screen out antiviral treatment candidates from all CHB patients.

CONCLUSIONS

Our results developed a refined model to better screen out antiviral treatment candidates from all CHB patients by combining common clinical parameters and important immune indicators, including innate and adaptive immunity. These findings provide more information for improving treatment guidelines and have potential implications for the timing of antiviral therapy to achieve better virus control and reduce the occurrence of end-stage liver disease.

摘要

背景

慢性乙型肝炎病毒(HBV)感染是一种严重的人类健康威胁,其发病率和死亡率都很高。及时有效的抗病毒治疗可以延缓肝病进展,降低 HBV 相关终末期肝病的发生。目前,抗病毒治疗标准主要根据美国肝病研究协会治疗指南,根据丙氨酸转氨酶(ALT)水平、HBV DNA 水平和 HBV e 抗原水平来确定。然而,一些不符合上述标准的慢性乙型肝炎(CHB)患者在未经抗病毒治疗的情况下仍会出现肝病进展。因此,迫切需要找到一种更全面的工具,尽快筛选出更多的抗病毒治疗候选者。

方法

鉴于免疫反应在 HBV 感染和 CHB 治愈中的重要作用,我们收集了 335 例未经治疗的 CHB 患者的数据,并对其临床和免疫特征(包括固有和适应性反应)进行了综合分析。免疫参数通过流式细胞术获得。最后,我们通过机器学习和 LASSO 回归对血清学和免疫参数进行了分析,建立了一个能够更好地区分需要治疗的 CHB 患者的模型。

结果

通过一系列分析,我们从 200 多个变量中选择了四个重要的临床参数(ALT、HBV DNA、Fibroscan 值和 A/G 比值)和四个免疫指标(NKbright+NKp44+、NKbright+NKG2A+、NKT+GranzymeB+和 CD3+CD107a+),并成功建立了一个具有高灵敏度和特异性的数学模型,能够更好地从所有 CHB 患者中筛选出抗病毒治疗的候选者。

结论

我们的研究结果开发了一种改良的模型,通过结合常见的临床参数和重要的免疫指标,包括固有和适应性免疫,从所有 CHB 患者中更好地筛选出抗病毒治疗的候选者。这些发现为改善治疗指南提供了更多信息,并为抗病毒治疗时机提供了潜在的指导意义,以实现更好的病毒控制,降低终末期肝病的发生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验