Suppr超能文献

MolGC:分子几何比较器算法,用于计算分子中键长的平均绝对误差。

MolGC: molecular geometry comparator algorithm for bond length mean absolute error computation on molecules.

机构信息

Computational Chemistry Physics Laboratory, Facultad de Medicina y Ciencias Biomedicas, Universidad Autonoma de Chihuahua, Campus II, 31125, Chihuahua, Mexico.

Faculty of Engineering, Universidad Autonoma de Chihuahua, Campus II, 31125, Chihuahua, Mexico.

出版信息

Mol Divers. 2024 Aug;28(4):1925-1945. doi: 10.1007/s11030-024-10945-2. Epub 2024 Aug 3.

Abstract

Density Functional Theory (DFT) is extensively used in theoretical and computational chemistry to study molecular and crystal properties across diverse fields, including quantum chemistry, materials physics, catalysis, biochemistry, and surface science. Despite advances in DFT hardware and software for optimized geometries, achieving consensus in molecular structure comparisons with experimental counterparts remains a challenge. This difficulty is exacerbated by the lack of automated bond length comparison tools, resulting in labor-intensive and error-prone manual processes. To address these challenges, we propose MolGC, a Molecular Geometry Comparator algorithm that automates the comparison of optimized geometries from different theoretical levels. MolGC calculates the mean absolute error (MAE) of bond lengths by integrating data from various DFT software. It provides interactive and customizable visualization of geometries, enabling users to explore different views for enhanced analysis. In addition, it saves MAE computations for further analysis and offers a comprehensive statistical summary of the results. MolGC effectively addresses complex graph labeling challenges, ensuring accurate identification and categorization of bonds in diverse chemical structures. It achieves a 98.91% average rate in correct bond label assignments on an antibiotics dataset, showcasing its effectiveness for comparing molecular bond lengths across geometries of varying complexity and size. The executable file and software resources for running MolGC can be downloaded from https://github.com/AbimaelGP/MolGC/tree/main .

摘要

密度泛函理论(DFT)在理论和计算化学中被广泛用于研究不同领域的分子和晶体性质,包括量子化学、材料物理、催化、生物化学和表面科学。尽管在优化几何形状的 DFT 硬件和软件方面取得了进展,但与实验结果相比,在分子结构比较方面达成共识仍然是一个挑战。由于缺乏自动化的键长比较工具,这一难度更加加剧,导致了劳动密集型和容易出错的手动过程。为了解决这些挑战,我们提出了 MolGC,这是一种分子几何比较器算法,它可以自动比较来自不同理论水平的优化几何形状。MolGC 通过整合来自各种 DFT 软件的数据来计算键长的平均绝对误差(MAE)。它提供了交互式和可定制的几何形状可视化,使用户能够探索不同的视图以进行增强分析。此外,它还为进一步分析保存了 MAE 计算,并提供了结果的全面统计摘要。MolGC 有效地解决了复杂的图形标记挑战,确保在不同的化学结构中准确识别和分类键。它在抗生素数据集上实现了 98.91%的平均正确键标签分配率,展示了它在比较不同复杂程度和大小的几何形状的分子键长方面的有效性。运行 MolGC 的可执行文件和软件资源可以从 https://github.com/AbimaelGP/MolGC/tree/main 下载。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验